NONLINEAR ASPECTS OF DATA INTEGRATION FOR LAND-COVER CLASSIFICATION IN A NEURAL-NETWORK ENVIRONMENT

被引:0
|
作者
BARROS, MSS
RODRIGUES, V
机构
来源
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Some results concerning the exploration of a neural network methodology's nonlinear aspects to provide land-cover in satellite imagery are presented. All required images are used in a Back-Error Propagation (BEP) network which is a nonlinear data integrator for spatial patterns classification. The network is trained to recognize the basic categories: grass, moisted soil, bare soil, forest, water and built-up areas. The results of a partial classification are used in a posterior analysis which is made to get the final classification in more detailed classes of land use. The performance results show how powerful is a neural-network based methodology for sattelite imagery integration and classification.
引用
收藏
页码:265 / 268
页数:4
相关论文
共 50 条
  • [41] AN EXPERT-SYSTEM FOR LAND-COVER CLASSIFICATION
    KARTIKEYAN, B
    MAJUMDER, KL
    DASGUPTA, AR
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (01): : 58 - 66
  • [42] Accuracy and inaccuracy assessments in land-cover classification
    Nishii, R
    Tanaka, S
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1999, 37 (01): : 491 - 498
  • [43] Dual Adversarial Networks for Land-cover Classification
    An, Jingyi
    Wei, Rongzhe
    Zha, Zhichao
    Dong, Bo
    [J]. 2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 394 - 399
  • [44] A Hyperheuristic Approach for Unsupervised Land-Cover Classification
    Papa, Joao Papa
    Papa, Luciene Patrici
    Pereira, Danillo Roberto
    Pisani, Rodrigo Jose
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2333 - 2342
  • [45] Accuracy and inaccuracy assessments in land-cover classification
    Nishii, Ryuei
    Tanaka, Shojiro
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37 (1 pt 2): : 491 - 498
  • [46] Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data
    Pearson, RG
    Dawson, TP
    Liu, C
    [J]. ECOGRAPHY, 2004, 27 (03) : 285 - 298
  • [47] Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic
    Ghimire, B.
    Rogan, J.
    Miller, J.
    [J]. REMOTE SENSING LETTERS, 2010, 1 (01) : 45 - 54
  • [48] Artificial Neural Network Approach for Land Cover Classification of Fused Hyperspectral and Lidar Data
    Giampouras, Paris
    Charou, Eleni
    Kesidis, Anastasios
    [J]. ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013, 2013, 412 : 255 - 261
  • [49] Multisource Earth Observation Data for Land-Cover Classification Using Random Forest
    Xu, Zhigang
    Chen, Jike
    Xia, Junshi
    Du, Peijun
    Zheng, Hongrui
    Gan, Le
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) : 789 - 793
  • [50] Land-cover Classification Based on SAR Data Using Superpixel and Cosine Similarity
    Mao, Xueyue
    Lu, Yilong
    Xiao, Xiao
    [J]. PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM 2020), 2020, : 92 - 94