UPPER BOUND FOR NUMBER OF SPANNING TREES OF A GRAPH

被引:27
|
作者
GRIMMETT, GR [1 ]
机构
[1] NEW COLL,OXFORD OX1 3BN,ENGLAND
关键词
D O I
10.1016/S0012-365X(76)80005-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:323 / 324
页数:2
相关论文
共 50 条
  • [1] On the upper bound for the number of spanning trees of a connected graph
    Li, Rao
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 95 : 257 - 269
  • [2] A sharp upper bound for the number of spanning trees of a graph
    Das, Kinkar Ch.
    [J]. GRAPHS AND COMBINATORICS, 2007, 23 (06) : 625 - 632
  • [3] A New Upper Bound on the Number of Spanning Trees of a Graph
    Li, Rao
    [J]. UTILITAS MATHEMATICA, 2013, 91 : 339 - 343
  • [4] A Sharp Upper Bound for the Number of Spanning Trees of a Graph
    Kinkar Ch. Das
    [J]. Graphs and Combinatorics, 2007, 23 : 625 - 632
  • [5] SHARP UPPER BOUNDS FOR THE NUMBER OF SPANNING TREES OF A GRAPH
    Feng, Lihua
    Yu, Guihai
    Jiang, Zhengtao
    Ren, Lingzhi
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 255 - 259
  • [6] A simple upper bound for the number of spanning trees of regular graphs
    Voblyi, V. A.
    [J]. DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (04): : 363 - 366
  • [7] A simple upper bound for the number of spanning trees of regular graphs
    [J]. Discrete Math Appl, 2008, 4 (363-366):
  • [8] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    [J]. Journal of Inequalities and Applications, 2013
  • [9] The number of spanning trees of a graph
    Li, Jianxi
    Shiu, Wai Chee
    Chang, An
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (03) : 286 - 290
  • [10] The number of spanning trees of a graph
    Das, Kinkar C.
    Cevik, Ahmet S.
    Cangul, Ismail N.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,