On the upper bound for the number of spanning trees of a connected graph

被引:0
|
作者
Li, Rao [1 ]
机构
[1] Dept. of Mathematical Sciences, University of South Carolina Aiken, Aiken,SC,29801, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Eigenvalues and eigenfunctions
引用
下载
收藏
页码:257 / 269
相关论文
共 50 条
  • [1] UPPER BOUND FOR NUMBER OF SPANNING TREES OF A GRAPH
    GRIMMETT, GR
    DISCRETE MATHEMATICS, 1976, 16 (04) : 323 - 324
  • [2] A sharp upper bound for the number of spanning trees of a graph
    Das, Kinkar Ch.
    GRAPHS AND COMBINATORICS, 2007, 23 (06) : 625 - 632
  • [3] A New Upper Bound on the Number of Spanning Trees of a Graph
    Li, Rao
    UTILITAS MATHEMATICA, 2013, 91 : 339 - 343
  • [4] A Sharp Upper Bound for the Number of Spanning Trees of a Graph
    Kinkar Ch. Das
    Graphs and Combinatorics, 2007, 23 : 625 - 632
  • [5] Maximizing the Number of Spanning Trees in a Connected Graph
    Li, Huan
    Patterson, Stacy
    Yi, Yuhao
    Zhang, Zhongzhi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 1248 - 1260
  • [6] SHARP UPPER BOUNDS FOR THE NUMBER OF SPANNING TREES OF A GRAPH
    Feng, Lihua
    Yu, Guihai
    Jiang, Zhengtao
    Ren, Lingzhi
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2008, 2 (02) : 255 - 259
  • [7] Properties on the average number of spanning trees in connected spanning subgraphs for an undirected graph
    Cheng, P
    Masuyama, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (05) : 1027 - 1033
  • [8] A simple upper bound for the number of spanning trees of regular graphs
    Voblyi, V. A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2008, 18 (04): : 363 - 366
  • [10] The number of spanning trees of a graph
    Kinkar C Das
    Ahmet S Cevik
    Ismail N Cangul
    Journal of Inequalities and Applications, 2013