In order to obtain the conditions for the existence of periodic and almost periodic solutions of Volterra difference equations, x(n + 1) = f(n; x ( n))+ Sigma(n)(s=-infinity) F(n, s, x(n + s); x(n)), we consider certain stability properties, which are referred to as (K, rho)-weakly uniformly-asymptotic stability and (K, rho)-uniformly asymptotic stability. Moreover, we discuss the relationship between the rho-separation condition and the uniformly-asymptotic stability property in the rho sense.
机构:
Univ Novi Sad, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21125, SerbiaUniv Novi Sad, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21125, Serbia
Kostic, Marko
Koyuncuoglu, Halis Can
论文数: 0引用数: 0
h-index: 0
机构:
Izmir Katip Celebi Univ, Dept Engn Sci, TR-35620 Izmir, TurkiyeUniv Novi Sad, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21125, Serbia
Koyuncuoglu, Halis Can
Fedorov, Vladimir E.
论文数: 0引用数: 0
h-index: 0
机构:
Chelyabinsk State Univ, Math Fac, Dept Math Anal, Kashirin Bros St 129, Chelyabinsk 454001, RussiaUniv Novi Sad, Fac Tech Sci, Trg D Obradovica 6, Novi Sad 21125, Serbia
机构:
Departamento de Matemática, I.C.M.C. Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos, SP, BrazilDepartamento de Matemática, I.C.M.C. Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil
Hernández, Eduardo
Henriquez, Hernán
论文数: 0引用数: 0
h-index: 0
机构:
Departamento de Matemática, Universidad de Santiago Casilla 307, Correo-2, Santiago, ChileDepartamento de Matemática, I.C.M.C. Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil