MAXIMUM POWER AND THERMAL EFFICIENCY OF AN IRREVERSIBLE POWER CYCLE

被引:12
|
作者
AITALI, M [1 ]
机构
[1] UNIV MICHIGAN,DEPT MEAM,ANN ARBOR,MI 48109
关键词
D O I
10.1063/1.359834
中图分类号
O59 [应用物理学];
学科分类号
摘要
A simple Carnot-like irreversible power cycle is modeled with two isothermal and two adiabatic, irreversible processes. The generic source of internal irreversibility, deduced from the Clausius inequality, produces entropy at a rate proportional to the external heat conductance and the engine temperature ratio. This cycle is optimized for maximum power and maximum efficiency, and its performances compared to those of the endoreversible cycle, based on typical heat source and heat sink temperatures. Both cycles produce maximum power at the same engine temperature ratio, but the irreversible cycle prediction of maximum efficiency and heat conductance allocation between steam boiler and condenser, appear to be not only more realistic, but also more relevant to actual design considerations of power plants. (C) 1995 American Institute of Physics.
引用
收藏
页码:4313 / 4318
页数:6
相关论文
共 50 条
  • [41] CONTRASTS BETWEEN MAXIMUM POWER TRANSFER AND MAXIMUM EFFICIENCY
    HMURCIK, LV
    MICINILIO, JP
    PHYSICS TEACHER, 1986, 24 (08): : 492 - 493
  • [42] Optimization of power and efficiency in an irreversible low-dissipation Carnot-like heat cycle
    Sirnessa, Lemi Lechisa
    Dima, Tolasa Adugna
    Eressa, Lemessa Asefa
    AIP ADVANCES, 2025, 15 (03)
  • [43] Optimal criteria for different parameters of an irreversible regenerative intercooled Brayton cycle under maximum power and maximum ecological COP conditions
    Tyagi, S. K.
    Wang, S. W.
    Chen, G. M.
    Han, X. H.
    Kaushik, S. C.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2006, 27 (01) : 37 - 51
  • [44] Enhanced thermal efficiency organic Rankine cycle for renewable power generation
    Caldino Herrera, U.
    Garcia, J. C.
    Sierra-Espinosa, F. Z.
    Rodriguez, J. A.
    Jaramillo, O. A.
    De Santiago, O.
    Tilvaldiev, S.
    APPLIED THERMAL ENGINEERING, 2021, 189
  • [45] Bounds of efficiency at maximum power for linear, superlinear and sublinear irreversible Carnot-like heat engines
    Wang, Yang
    Tu, Z. C.
    EPL, 2012, 98 (04)
  • [46] THE EFFICIENCY OF AN IRREVERSIBLE CYCLE
    DAY, WA
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 104 (02) : 111 - 123
  • [47] Power density optimization for an irreversible closed brayton cycle
    Chen, LG
    Zheng, JL
    Sun, FR
    Wu, C
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2001, 8 (03): : 241 - 260
  • [48] Efficiency and Exergy Efficiency of a Heat Engine with the Maximum Power
    Kheifets, L. I.
    Zelenko, V. L.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 94 (06) : 1087 - 1091
  • [49] Efficiency and Exergy Efficiency of a Heat Engine with the Maximum Power
    L. I. Kheifets
    V. L. Zelenko
    Russian Journal of Physical Chemistry A, 2020, 94 : 1087 - 1091
  • [50] AN ANALYTICAL FORMULA FOR THE ESTIMATION OF A RANKINE-CYCLE HEAT ENGINE EFFICIENCY AT MAXIMUM POWER
    LEE, WY
    KIM, SS
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 1991, 15 (03) : 149 - 159