ON THE BOUNDEDNESS OF SOME CLASSES OF INTEGRAL OPERATORS IN WEIGHTED LEBESGUE SPACES

被引:0
|
作者
Arendarenko, L. S. [1 ]
Oinarov, R. [1 ]
Persson, L. -E. [2 ]
机构
[1] Eurasian Natl Univ, Dept Fundamental & Applying Math, Fac Mech & Math, Astana, Kazakhstan
[2] Lulea Univ Technol, Dept Engn Sci & Math, SE-97187 Lulea, Sweden
来源
EURASIAN MATHEMATICAL JOURNAL | 2012年 / 3卷 / 01期
关键词
Hardy type inequalities; boundedness; integral operators; kernels; weighted Lebesgue spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some new Hardy-type inequalities for Hardy-Volterra integral operators are proved and discussed. The case 1 < q < p < infinity is considered and the involved kernels satisfy conditions, which are less restrictive than the usual Oinarov condition.
引用
收藏
页码:5 / 17
页数:13
相关论文
共 50 条
  • [21] Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space
    Oinarov, R.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (10-11) : 1021 - 1038
  • [22] Multilinear integral operators in weighted grand Lebesgue spaces
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    Fractional Calculus and Applied Analysis, 2016, 19 : 696 - 724
  • [23] MULTILINEAR INTEGRAL OPERATORS IN WEIGHTED GRAND LEBESGUE SPACES
    Kokilashvili, Vakhtang
    Mastylo, Mieczyslaw
    Meskhi, Alexander
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 696 - 724
  • [24] On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
    V. M. Kokilashvili
    A. N. Meskhi
    Proceedings of the Steklov Institute of Mathematics, 2021, 312 : 194 - 206
  • [25] On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
    Kokilashvili, V. M.
    Meskhi, A. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 312 (01) : 194 - 206
  • [27] Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations
    Nicola, Fabio
    STUDIA MATHEMATICA, 2010, 198 (03) : 207 - 219
  • [28] Singular integral operators with fixed singularities on weighted Lebesgue spaces
    Karlovich, YI
    de Arellano, ER
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2004, 48 (03) : 331 - 363
  • [29] Singular Integral Operators with Fixed Singularities on Weighted Lebesgue Spaces
    Yu. I. Karlovich
    E. Ramírez de Arellano
    Integral Equations and Operator Theory, 2004, 48 : 331 - 363
  • [30] Integral operators on fully measurable weighted grand Lebesgue spaces
    Jain, Pankaj
    Singh, Monika
    Singh, Arun Pal
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 516 - 526