Lower-modular elements of the lattice of semigroup varieties. II

被引:0
|
作者
Vernikov, B. M. [1 ]
机构
[1] Ural State Univ, Dept Math & Mech, Lenina 51, Ekaterinburg 620083, Russia
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2008年 / 74卷 / 3-4期
基金
俄罗斯基础研究基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A semigroup variety is called modular [upper-modular, lower-modular, neutral] if it is a modular [respectively upper-modular, lower-modular, neutral] element of the lattice of all semigroup varieties. We classify all lower-modular varieties in the class of varieties of semigroups with a completely regular power, in the class of varieties of index <= 2, and in the class of varieties satisfying an identity of the form x(1)x(2) ... x(n) = x(1 pi)x(2 pi) ... x(n pi), where pi is a permutation on the set {1, 2,..., n} with 1 pi (SIC) 1 and n pi (SIC) n. It turns out that every lower-modular variety is modular in all these three classes. Moreover, for varieties of index <= 2, the properties of being lower-modular, modular and neutral are equivalent. We completely determine also all semigroup varieties that are both upper-modular and lower-modular. It turns out that all such varieties are neutral.
引用
收藏
页码:539 / 556
页数:18
相关论文
共 50 条
  • [21] The periodicity of special elements in the lattice of semigroup varieties
    Shaprynskii, V. Yu.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2012, 18 (03): : 282 - 286
  • [22] Distributive and Neutral Elements of the Lattice of Commutative Semigroup Varieties
    Shaprynskii, V. Yu.
    RUSSIAN MATHEMATICS, 2011, 55 (07) : 56 - 67
  • [23] Special Elements in the Lattice of Overcommutative Semigroup Varieties Revisited
    Shaprynskii, Vyacheslav Yu.
    Vernikov, Boris M.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (01): : 139 - 155
  • [24] Special Elements in the Lattice of Overcommutative Semigroup Varieties Revisited
    Vyacheslav Yu. Shaprynskiǐ
    Boris M. Vernikov
    Order, 2011, 28 : 139 - 155
  • [25] Diptych varieties. II: Apolar varieties
    Brown, Gavin
    Reid, Miles
    HIGHER DIMENSIONAL ALGEBRAIC GEOMETRY IN HONOUR OF PROFESSOR YUJIRO KAWAMATA'S SIXTIETH BIRTHDAY, 2017, 74 : 41 - 72
  • [26] THE LATTICE OF COMPLETELY REGULAR SEMIGROUP VARIETIES
    PASTIJN, F
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 49 : 24 - 42
  • [27] Special elements in lattices of semigroup varieties
    Vernikov B.M.
    Acta Scientiarum Mathematicarum, 2015, 81 (1-2): : 79 - 109
  • [28] Generically split projective homogeneous varieties. II
    Petrov, Victor
    Semenov, Nikita
    JOURNAL OF K-THEORY, 2012, 10 (01) : 1 - 8
  • [29] Creeping curent (II anounouncement) Quantitive varieties.
    Schriever, H
    ZEITSCHRIFT FUR BIOLOGIE, 1932, 93 (02): : 123 - 148
  • [30] Smooth double subvarieties on singular varieties. II
    del Rosario Gonzalez-Dorrego, Maria
    SINGULARITIES IN GEOMETRY AND TOPOLOGY 2011, 2015, 66 : 1 - 11