FREEFORM SURFACE RECONSTRUCTION FROM SCATTERED POINTS USING A DEFORMABLE SPHERICAL MAP

被引:2
|
作者
Knopf, George K. [1 ]
Sangole, Archana P. [2 ,3 ]
机构
[1] Univ Western Ontario, Fac Engn, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[2] CRIR Rehabil Inst Montreal, Montreal, PQ H3S 2J4, Canada
[3] McGill Univ, Sch Phys & Occupat Therapy, Montreal, PQ H3G 1Y5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Deformable spherical map; scattered data interpolation; spherical selforganizing feature map;
D O I
10.1142/S0219467806002343
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconstruction of freeform surfaces from scattered coordinate data is a difficult problem encountered in many surface fitting and geometric modeling applications. Conventional tessellation and parametric surface fitting techniques are limited because they require prior knowledge about the connectivity between the sampled points. The method of surface reconstruction described in this paper exploits the learning capability of a selforganizing feature map (SOFM) to adaptively fit a deformable sphere to the unorganized 3D coordinate data. The learning algorithm automatically establishes the connectivity between the measured points by iteratively changing the topological relationships within the map. By incorporating additional constraints during the learning process it is possible to have the deformable map follow the shape of objects with surface holes and cavities. Several examples of freeform surfaces with varying levels of complexity are discussed in order to demonstrate the performance of the algorithm.
引用
收藏
页码:341 / 356
页数:16
相关论文
共 50 条
  • [21] Surface reconstruction: From points to splines
    Guo, BN
    COMPUTER-AIDED DESIGN, 1997, 29 (04) : 269 - 277
  • [22] Reconstruction of B-spline surfaces from scattered data points
    Gregorski, BF
    Hamann, B
    Joy, KI
    COMPUTER GRAPHICS INTERNATIONAL 2000, PROCEEDINGS, 2000, : 163 - 170
  • [23] Algorithms for surface reconstruction from curvature data for freeform aspherics
    Kim, Dae Wook
    Kim, ByoungChang
    Zhao, Chunyu
    Oh, ChangJin
    Burge, James H.
    OPTICAL MANUFACTURING AND TESTING X, 2013, 8838
  • [24] Implicit Surface Reconstruction from 3D Scattered Points Based on Variational Level Set Method
    Liu, Hanbo
    Wang, Xin
    Qiang, Wenyi
    2008 2ND INTERNATIONAL SYMPOSIUM ON SYSTEMS AND CONTROL IN AEROSPACE AND ASTRONAUTICS, VOLS 1 AND 2, 2008, : 641 - +
  • [25] Reconstruction of surface profile from optical scattered field
    Alwakil, A.
    Soriano, G.
    Maire, G.
    Talneau, A.
    Giovannini, H.
    Belkebir, Kamal
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM IN CHINA (ACES-CHINA 2018), 2018,
  • [26] Composite freeform surface reconstruction using recursive interpolating subdivision scheme
    Ren, BY
    Hagiwara, I
    COMPUTERS IN INDUSTRY, 2003, 50 (03) : 265 - 275
  • [27] SURFACE RECONSTRUCTION USING DEFORMABLE MODELS WITH INTERIOR AND BOUNDARY CONSTRAINTS
    WANG, YF
    WANG, JF
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (05) : 572 - 579
  • [28] Using Spherical-Harmonics Expansions for Optics Surface Reconstruction from Gradients
    Manuel Solano-Altamirano, Juan
    Vazquez-Otero, Alejandro
    Khikhlukha, Danila
    Dormido, Raquel
    Duro, Natividad
    SENSORS, 2017, 17 (12)
  • [29] Multiresolution surface reconstruction method from dense scattered data
    School of Information Science and Technology, Jiujiang University, Jiujiang 332005, China
    不详
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao, 2006, 2 (308-313):
  • [30] Implicit surface reconstruction from scattered point data with noise
    Yang, Jun
    Wang, Zhengning
    Zhu, Changqian
    Peng, Qiang
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 57 - +