QUANTUM DEFORMATION OF THE AFFINE TRANSFORMATION ALGEBRA

被引:1
|
作者
AIZAWA, N [1 ]
SATO, HT [1 ]
机构
[1] OSAKA UNIV,COLL GEN EDUC,INST PHYS,TOYONAKA,OSAKA 560,JAPAN
关键词
D O I
10.1016/0375-9601(94)90845-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators.
引用
收藏
页码:187 / 190
页数:4
相关论文
共 50 条
  • [21] On irreducibility of tensor products of evaluation modules for the quantum affine algebra
    Molev, AI
    Tolstoy, VN
    Zhang, RB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06): : 2385 - 2399
  • [22] The classical origin of quantum affine algebra in squashed sigma models
    Kawaguchi, Io
    Matsumoto, Takuya
    Yoshida, Kentaroh
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [23] FREE FIELD REPRESENTATION FOR THE CLASSICAL LIMIT OF THE QUANTUM AFFINE ALGEBRA
    LUKYANOV, S
    SHATASHVILI, SL
    PHYSICS LETTERS B, 1993, 298 (1-2) : 111 - 115
  • [24] PERFECT CRYSTALS FOR THE QUANTUM AFFINE ALGEBRA Uq(Cn(1))
    Kang, Seok-Jin
    Kim, Myungho
    Lee, Inha
    Misra, Kailash C.
    NEW TRENDS IN QUANTUM INTEGRABLE SYSTEMS, 2011, : 139 - 156
  • [25] The classical origin of quantum affine algebra in squashed sigma models
    Io Kawaguchi
    Takuya Matsumoto
    Kentaroh Yoshida
    Journal of High Energy Physics, 2012
  • [26] CLASSICAL POISSON BRACKET ALGEBRA AND QUANTUM AFFINE GAUDIN MODEL
    CHOWDHURY, AR
    CHOWDHURY, AG
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1994, 63 (01) : 1 - 4
  • [27] Anyonic realization of the quantum affine Lie algebra Uq(AN - 1)
    Phys Lett Sect B Nucl Elem Part High Energy Phys, 3-4 (313):
  • [28] THE HIGGS ALGEBRA AS A QUANTUM DEFORMATION OF SU(2)
    ZHEDANOV, AS
    MODERN PHYSICS LETTERS A, 1992, 7 (06) : 507 - 512
  • [29] Quantum affine Gelfand–Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces
    Aleksander Tsymbaliuk
    Selecta Mathematica, 2010, 16 : 173 - 200
  • [30] The Schwartz algebra of an affine Hecke algebra
    Delorme, Patrick
    Opdam, Eric M.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 625 : 59 - 114