ADAPTIVELY LOCAL ONE-DIMENSIONAL SUBPROBLEMS WITH APPLICATION TO A DECONVOLUTION PROBLEM

被引:64
|
作者
FAN, JQ
机构
来源
ANNALS OF STATISTICS | 1993年 / 21卷 / 02期
关键词
CUBICAL LOWER BOUND; ONE-DIMENSIONAL SUBPROBLEMS; GLOBAL RATES OF CONVERGENCE; MINIMAX INTEGRATED RISKS; DECONVOLUTION;
D O I
10.1214/aos/1176349139
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a method for finding global minimax lower bounds is introduced. The idea is to adjust automatically the direction of a local one-dimensional subproblem at each location to the nearly hardest one, and to use locally the difficulty of the one-dimensional subproblem. This method has the advantages of being easily implemented and understood. The lower bound is then applied to nonparametric deconvolution to obtain the optimal rates of convergence for estimating a whole function. Other applications are also addressed.
引用
收藏
页码:600 / 610
页数:11
相关论文
共 50 条
  • [21] On a one-dimensional interval search problem
    Gasanov, E.E.
    Discrete Mathematics and Applications, 5 (02):
  • [22] On Solutions of the One-Dimensional Goldshtik Problem
    Baskov, O. V.
    Potapov, D. K.
    MATHEMATICAL NOTES, 2024, 115 (1-2) : 12 - 20
  • [23] ON THE ONE-DIMENSIONAL SPACE ALLOCATION PROBLEM
    PICARD, JC
    QUEYRANNE, M
    OPERATIONS RESEARCH, 1981, 29 (02) : 371 - 391
  • [24] Comment on 'The one-dimensional Coulomb problem'
    Nunez-Yepez, H. N.
    Salas-Brito, A. L.
    Solis, Didier A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (20)
  • [25] One-Dimensional Quasilinear Eigenvalue Problem
    Kostomarov, D. P.
    DOKLADY MATHEMATICS, 2010, 82 (01) : 634 - 637
  • [26] One-Dimensional Inverse Scattering Problem
    Gaikovich, P. K.
    Sumin, M. I.
    Gaikovich, K. P.
    2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [27] SOLVABILITY OF AN ONE-DIMENSIONAL PROBLEM OF THERMOELASTICITY
    ORLOV, VP
    SOBOLEVSKII, PE
    DOKLADY AKADEMII NAUK SSSR, 1989, 304 (05): : 1105 - 1109
  • [28] PROBLEM OF ONE-DIMENSIONAL DISORDERED CHAIN
    OZVOLD, M
    SURDA, A
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1976, 26 (07) : 790 - 794
  • [29] On the problem of homogenizing one-dimensional systems
    Vinogradov, AP
    Merzlikin, AV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 94 (03) : 482 - 488
  • [30] Annealing genetic algorithm and its application in one-dimensional cutting stock problem
    Wang Jie
    Zhang Binyan
    Li Dawei
    Wang Li
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 1341 - 1344