Hemodynamics and Fluid-Structure-Interaction in a Virtual Heart

被引:0
|
作者
Schenkel, Torsten [1 ]
Krittian, Sebastian [2 ,3 ]
Muehlhausen, Mark-Patrick [1 ]
Oertel, Herbert [1 ]
机构
[1] Karlsruhe Inst Technol, Karlsruhe, Germany
[2] Univ Oxford, Oxford, England
[3] Univ Oxford, Comp Lab, Oxford, England
来源
IT-INFORMATION TECHNOLOGY | 2010年 / 52卷 / 05期
关键词
J.3 [Computer Applications: Life and Medical Sciences] Health; blood flow in the heart; computational continuum mechanics; fluid-solid-interaction; hemodynamics;
D O I
10.1524/itit.2010.0599
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling the function of the human heart is of growing importance in a time when surgical treatment becomes the predominant therapy option. The hemodynamics of ventricular and vascular flow is closely linked to other disciplines like structural mechanics of myocardial and vascular tissue, electro-dynamical excitation, etc. A multi-disciplinary approach is therefore needed to describe it. While a monolithic solution of the underlying differential equations in one set is thinkable, a partitioned approach can take into account the specifics of the single disciplines and profit from specialized models and algorithms. We show how by coupling specialized solvers for fluid and solid mechanics a coupled model of ventricular flow can be created that gives insight into the hemodynamics in a way that is more than the sum of its parts.
引用
收藏
页码:250 / 257
页数:8
相关论文
共 50 条
  • [21] Modelling of Industrial Hybrid Bonding Processes considering Fluid-Structure-Interaction
    Fricke, Holger
    Vallee, Till
    Mayer, Bernd
    [J]. COUPLED PROBLEMS IN SCIENCE AND ENGINEERING VII (COUPLED PROBLEMS 2017), 2017, : 393 - 399
  • [22] Simulation of the fluid-structure-interaction of steam generator tubes and bluff bodies
    Kuehlert, Karl
    Webb, Stephen
    Schowalter, David
    Holmes, William
    Chilka, Amarvir
    Reuss, Steve
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (08) : 2048 - 2054
  • [23] Fluid-structure-interaction simulations of forming-air impact thermoforming
    Wagner, Simon
    Sheikhi, Rasoul
    Kayatz, Fabian
    Muensch, Manuel
    Hauptmann, Marek
    Delgado, Antonio
    [J]. POLYMER ENGINEERING AND SCIENCE, 2022, 62 (04): : 1294 - 1309
  • [24] A FULLY COUPLED FLUID-STRUCTURE-INTERACTION MODEL FOR FOIL GAS BEARINGS
    Zhang, Wei
    Alahyari, Abbas A.
    Chiappetta, Louis
    [J]. PROCEEDINGS OF THE ASME/STLE INTERNATIONAL JOINT TRIBOLOGY CONFERENCE, IJTC 2012, 2013, : 151 - 158
  • [25] Fluid-structure-interaction for a steel plate subjected to non-contact explosion
    Pi, S. J.
    Cheng, D. S.
    Cheng, H. L.
    Li, W. C.
    Hung, C. W.
    [J]. THEORETICAL AND APPLIED FRACTURE MECHANICS, 2012, 59 (01) : 1 - 7
  • [26] On the influence of fluid-structure-interaction on the stability of thin-walled shell structures
    Hassler, M.
    Schweizerhof, K.
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2007, 7 (02) : 313 - 335
  • [27] Multivariate interpolation for fluid-structure-interaction problems using radial basis functions
    Beckert, A
    Wendland, H
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2001, 5 (02) : 125 - 134
  • [28] Ramifications of Vorticity on Aggregation and Activation of Platelets in Bi-Leaflet Mechanical Heart Valve: Fluid-Structure-Interaction Study
    Ahmed, Meraj
    Gupta, Nirmal
    Jana, Rashmoni
    Das, Malay K.
    Kar, Kamal K.
    [J]. JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (08):
  • [29] Fluid-Structure-Interaction Applying a Ghost-Cell Immersed Boundary Method
    Hylla, Eike
    Thiele, Frank
    [J]. NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS VIII, 2013, 121 : 473 - 480
  • [30] Revisiting density-based topology optimization for fluid-structure-interaction problems
    Christian Lundgaard
    Joe Alexandersen
    Mingdong Zhou
    Casper Schousboe Andreasen
    Ole Sigmund
    [J]. Structural and Multidisciplinary Optimization, 2018, 58 : 969 - 995