Generalized Toda field theories

被引:4
|
作者
Brink, L [1 ]
Vasiliev, MA [1 ]
机构
[1] PN LEBEDEV PHYS INST,DEPT IE TAMM THEORET,MOSCOW 117924,RUSSIA
关键词
D O I
10.1016/0550-3213(95)00532-3
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper we introduce a unified approach to Toda field theories which allows us to formulate the classes of A(n), B-n and C-n models as unique models involving an arbitrary continuous parameter nu. For certain values of nu, the model describes the standard Toda theories. For other values of nu it defines a class of models that involve infinitely many fields. These models interpolate between the various standard Toda field theories. They are conformally invariant and possess infinitely many conserved higher-spin currents thus making them candidates for a new set of integrable systems. A general construction is performed, which can effectively be used for the derivation of explicit forms of particular higher-spin currents. We also study the currents in a different representation in which they are linear in the dynamical variables having, however, a non-linear Poisson bracket algebra. An explicit formula for this Poisson structure is found.
引用
收藏
页码:273 / 308
页数:36
相关论文
共 50 条
  • [31] FREE-FIELD REPRESENTATION OF TODA FIELD-THEORIES
    ALDROVANDI, E
    BONORA, L
    BONSERVIZI, V
    PAUNOV, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (01): : 57 - 86
  • [32] FREE FIELD RESOLUTIONS IN AFFINE TODA FIELD-THEORIES
    FEIGIN, B
    FRENKEL, E
    PHYSICS LETTERS B, 1992, 276 (1-2) : 79 - 86
  • [33] Deformed σ-models, Ricci flow and Toda field theories
    Bykov, Dmitri
    Luest, Dieter
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (06)
  • [34] Using conservation laws to solve toda field theories
    Hohler, EGB
    Olaussen, K
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (10): : 1831 - 1853
  • [35] Momentum conserving defects in affine Toda field theories
    Bristow, Rebecca
    Bowcock, Peter
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (05):
  • [36] Particle reflection amplitudes in an(1) Toda field theories
    Delius, GW
    Gandenberger, GM
    NUCLEAR PHYSICS B, 1999, 554 (1-2) : 325 - 364
  • [37] LIOUVILLE AND TODA FIELD-THEORIES ON RIEMANN SURFACES
    ALDROVANDI, E
    BONORA, L
    JOURNAL OF GEOMETRY AND PHYSICS, 1994, 14 (01) : 65 - 109
  • [38] QUANTUM SL(N) TODA FIELD-THEORIES
    BONORA, L
    BONSERVIZI, V
    NUCLEAR PHYSICS B, 1993, 390 (01) : 205 - 222
  • [39] Boundary Lax pairs for the An(1) Toda field theories
    Avan, Jean
    Doikou, Anastasia
    NUCLEAR PHYSICS B, 2009, 821 (03) : 481 - 505
  • [40] Momentum conserving defects in affine Toda field theories
    Rebecca Bristow
    Peter Bowcock
    Journal of High Energy Physics, 2017