A NEW MERSENNE PRIME

被引:1
|
作者
COLQUITT, WN
WELSH, L
机构
关键词
D O I
10.2307/2008415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number 2(110503) -1 is a Mersenne prime. There are exactly two Mersenne exponents between 100000 and 139268, and there are no Mersenne exponents between 216092 and 353620. Thus, the number 2(132049) -1 has been verified as the 30th Mersenne prime in order of size.
引用
收藏
页码:867 / 870
页数:4
相关论文
共 50 条
  • [21] EFFICIENT ARITHMETIC IN (PSEUDO-)MERSENNE PRIME ORDER FIELDS
    Nath, Kaushik
    Sarkar, Palash
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (02) : 303 - 348
  • [22] Generalized Mersenne Prime number and its application to random number generation
    Deng, LY
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, 2004, : 167 - 180
  • [23] CYCLIC PROPERTIES OF PSEUDO-RANDOM SEQUENCES OF MERSENNE PRIME RESIDUES
    HILL, GW
    COMPUTER JOURNAL, 1979, 22 (01): : 80 - 85
  • [24] On New Identities For Mersenne Numbers
    Goy, Taras
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 100 - 105
  • [25] Quantum circuits for hyperelliptic curve discrete logarithms over the Mersenne prime fields
    Chao Chen
    Peidong Guan
    Yan Huang
    Fangguo Zhang
    Quantum Information Processing, 22
  • [26] Exact Power Analysis of Unified Code over Generalized Mersenne Prime Fields
    Masue, Toshiyuki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (02) : 618 - 625
  • [27] Quantum circuits for hyperelliptic curve discrete logarithms over the Mersenne prime fields
    Chen, Chao
    Guan, Peidong
    Huang, Yan
    Zhang, Fangguo
    QUANTUM INFORMATION PROCESSING, 2023, 22 (07)
  • [28] A THEOREM FOR COMPUTING PRIMITIVE ELEMENTS IN THE FIELD OF COMPLEX INTEGERS OF A CHARACTERISTIC MERSENNE PRIME
    MILLER, RL
    REED, IS
    TRUONG, TK
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (01): : 119 - 120
  • [29] A Simple Proof of Skula's Theorem on Prime Power Divisors of Mersenne Numbers
    Klaska, Jiri
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (04)
  • [30] New transform using the Mersenne numbers
    Boussakta, S
    Holt, AGJ
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 1995, 142 (06): : 381 - 388