A NEW MERSENNE PRIME

被引:1
|
作者
COLQUITT, WN
WELSH, L
机构
关键词
D O I
10.2307/2008415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number 2(110503) -1 is a Mersenne prime. There are exactly two Mersenne exponents between 100000 and 139268, and there are no Mersenne exponents between 216092 and 353620. Thus, the number 2(132049) -1 has been verified as the 30th Mersenne prime in order of size.
引用
收藏
页码:867 / 870
页数:4
相关论文
共 50 条
  • [1] On generalized Mersenne prime
    Hoque A.
    Saikia H.K.
    SeMA Journal, 2014, 66 (1) : 1 - 7
  • [2] ON PRIME DIVISORS OF MERSENNE NUMBERS
    ERDOS, P
    KISS, P
    POMERANCE, C
    ACTA ARITHMETICA, 1991, 57 (03) : 267 - 281
  • [3] WHERE IS THE NEXT MERSENNE PRIME HIDING
    SCHROEDER, MR
    MATHEMATICAL INTELLIGENCER, 1983, 5 (03): : 31 - 33
  • [4] Sums of prime divisors and Mersenne numbers
    Banks, William D.
    Luca, Florian
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (02): : 403 - 413
  • [5] On the largest prime factor of a Mersenne number
    Murata, L
    Pomerance, C
    NUMBER THEORY, 2004, 36 : 209 - 218
  • [6] 24TH MERSENNE PRIME
    TUCKERMAN, B
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 608 - +
  • [8] The great Internet Mersenne prime search
    Gage, JS
    M D COMPUTING, 1998, 15 (04): : 266 - 267
  • [9] ON THE LARGEST PRIME FACTOR OF THE MERSENNE NUMBERS
    Ford, Kevin
    Luca, Florian
    Shparlinski, Igor E.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 455 - 463
  • [10] MERSENNE PRIME FACTOR AND SUM OF BINOMIAL COEFFICIENTS
    Jo, Gye Hwan
    Kim, Daeyeoul
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (1-2): : 61 - 68