ENUMERATIONS OF THE HAMILTONIAN-WALKS ON A CUBIC SUBLATTICE

被引:49
|
作者
PANDE, VS
JOERG, C
GROSBERG, AY
TANAKA, T
机构
[1] MIT,CTR MAT SCI & ENGN,CAMBRIDGE,MA 02139
[2] MIT,COMP SCI LAB,CAMBRIDGE,MA 02139
来源
关键词
D O I
10.1088/0305-4470/27/18/030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A massively parallel supercomputer was used to exhaustively enumerate all of the Hamiltonian walks for simple cubic sublattices of four different sizes (up to 3 x 4 x 4). The behaviour of the logarithm of the number of walks was found to be linear in the number of vertices in the lattice. The linear fit is shown to agree also with the asymptotic limit of the Flory mean field theoretical estimate. Thus, we suggest that the fit obtained yields the number of walks for any size fragment of the cubic lattice to logarithmic accuracy. The significance of this result to the validity of polymer models is also discussed.
引用
收藏
页码:6231 / 6236
页数:6
相关论文
共 50 条
  • [31] HAMILTONIAN CYCLES IN SQUARE OF CUBIC GRAPHS
    FLEISCHN.H
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (07): : 1050 - &
  • [32] ALMOST ALL CUBIC GRAPHS ARE HAMILTONIAN
    ROBINSON, RW
    WORMALD, NC
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (02) : 117 - 125
  • [33] A Cubic Hamiltonian System with Meromorphic Solutions
    Kecker, Thomas
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (02) : 307 - 317
  • [34] CENTER CONFIGURATIONS OF HAMILTONIAN CUBIC SYSTEMS
    Blows, Terence R.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) : 1111 - 1122
  • [35] HAMILTONIAN CUBIC GRAPHS AND CENTRALIZERS OF INVOLUTIONS
    BABAI, L
    FRANKL, P
    KOLLAR, J
    SABIDUSSI, G
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (03): : 458 - 464
  • [36] The domination number of cubic Hamiltonian graphs
    Cropper, M.
    Greenwell, D.
    Hilton, A. J. W.
    Kostochka, A.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2005, 2 (02) : 137 - 144
  • [37] Perturbation from an asymmetric cubic Hamiltonian
    Zhang, TH
    Han, M
    Zang, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) : 617 - 630
  • [38] A NOTE ON THE SUPEREXCHANGE HAMILTONIAN FOR CUBIC LATTICE
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1981, 60 (05) : 723 - 725
  • [39] Hamiltonian walks on Sierpinski and n-simplex fractals
    Stajic, J
    Elezovic-Hadzic, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (25): : 5677 - 5695
  • [40] Hamiltonian Cycles, Random Walks, and Discounted Occupational Measures
    Eshragh, Ali
    Filar, Jerzy
    MATHEMATICS OF OPERATIONS RESEARCH, 2011, 36 (02) : 258 - 270