HAMILTON CYCLES AND EIGENVALUES OF GRAPHS

被引:50
|
作者
VANDENHEUVEL, J
机构
[1] Department of Mathematics, Statistics Simon Fraser University Burnaby
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0024-3795(95)00254-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some results concerning necessary conditions for a graph to be Hamiltonian in terms of eigenvalues of certain matrices associated with the graph. As an example, we show bow the results give an easy algebraic proof of the nonexistence of a Hamilton cycle in two graphs, one of them being the Petersen graph.
引用
收藏
页码:723 / 730
页数:8
相关论文
共 50 条
  • [21] Hamilton cycles in generalized Mycielski graphs
    Panneerselvam, L.
    Ganesamurthy, S.
    Muthusamy, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [22] On packing Hamilton cycles in ε-regular graphs
    Frieze, A
    Krivelevich, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 159 - 172
  • [23] Hamilton cycles in tensor product of graphs
    Balakrishnan, R
    Paulraja, P
    DISCRETE MATHEMATICS, 1998, 186 (1-3) : 1 - 13
  • [24] Hamilton cycles in strong products of graphs
    Král, D
    Maxová, J
    Sámal, R
    Podbrdsky, P
    JOURNAL OF GRAPH THEORY, 2005, 48 (04) : 299 - 321
  • [25] Edge disjoint Hamilton cycles in graphs
    Li, GJ
    JOURNAL OF GRAPH THEORY, 2000, 35 (01) : 8 - 20
  • [26] Hamilton cycles in random lifts of graphs
    Luczak, Tomasz
    Witkowski, Lukasz
    Witkowski, Marcin
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 49 : 105 - 116
  • [27] A survey on Hamilton cycles in directed graphs
    Kuehn, Daniela
    Osthus, Deryk
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 750 - 766
  • [28] Hamilton Cycles in Restricted Rotator Graphs
    Stevens, Brett
    Williams, Aaron
    COMBINATORIAL ALGORITHMS, 2011, 7056 : 324 - 336
  • [29] HAMILTON CYCLES IN BIDIRECTED COMPLETE GRAPHS
    Busch, Arthur
    Mutar, Mohammed A.
    Slilaty, Daniel
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2022, 17 (02) : 137 - 149
  • [30] On Covering Expander Graphs by Hamilton Cycles
    Glebov, Roman
    Krivelevich, Michael
    Szabo, Tibor
    RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (02) : 183 - 200