HUMAN CORNEAL ENDOTHELIAL TOLERANCE TO GLYCEROL, DIMETHYLSULFOXIDE, 1,2-PROPANEDIOL, AND 2,3-BUTANEDIOL

被引:20
|
作者
BOURNE, WM
SHEARER, DR
NELSON, LR
机构
[1] Department of Ophthalmology, Mayo Clinic, Rochester, MN
关键词
D O I
10.1006/cryo.1994.1001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We exposed human corneas to various concentrations of four cryoprotectants by one of two methods: a gradual increase to the final concentration (ramp method) and a series of steps to the final concentration (step method). Endothelial damage was manifest as a decrease in the number of endothelial cells per unit area. The highest concentrations that did not cause a loss of endothelial cells by the ramp and step methods, respectively, were 4.3 and 2.0 M glycerol, 2.0 and 4.3 M dimethylsulfoxide, 2.0 and 3.0 M 1,2-propanediol, and 2.0 and 2.5 M 2,3-butanediol. The ramp method achieved higher final concentrations with the more slowly permeating glycerol, but required low toxicity. The step method achieved higher final concentrations with the more toxic cryoprotectants by limiting the exposure time, but required more rapid permeation. None of the four cryoprotectants was tolerated at concentrations sufficient for vitrification at practical cooling and warming rates. (C) 1994 Academic Press, Inc.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Effect of hydrogen donor on glycerol hydrodeoxygenation to 1,2-propanediol
    Yfanti, V-L
    Lemonidou, A. A.
    CATALYSIS TODAY, 2020, 355 (355) : 727 - 736
  • [32] Excess enthalpies for the systems 1,3-butanediol plus cyclohexanol plus decane and 1,2-propanediol plus 1,3-butanediol plus cyclohexanol and for constituent binaries at 318.15 K
    Kuus, M
    Kirss, H
    Siimer, E
    Kudryavtseva, L
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1996, 41 (05): : 1206 - 1209
  • [33] Hydrogenolysis of 1,2-Propanediol for the Production of Biopropanols from Glycerol
    Amada, Yasushi
    Koso, Shuichi
    Nakagawa, Yoshinao
    Tomishige, Keiichi
    CHEMSUSCHEM, 2010, 3 (06) : 728 - 736
  • [34] Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae
    Jung, Joon-Young
    Yun, Hyun Shik
    Lee, Jinwon
    Oh, Min-Kyu
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 21 (08) : 846 - 853
  • [35] EFFECTS OF 1,3-BUTANEDIOL AND 1,2-PROPANEDIOL ON BLOOD KETONE-BODIES AND GLUCOSE IN SHEEP FED RESTRICTED DIETS
    EMMANUEL, B
    NAHAPETIAN, A
    JOURNAL OF ANIMAL SCIENCE, 1975, 41 (05) : 1468 - 1473
  • [36] Effect of saccharides on the glass-forming tendency and stability of solutions of 2,3-butanediol, 1,2-propanediol, or 1,3-butanediol in water, phosphate-buffered saline, Euro-Collins solution, or Saint Thomas cardioplegic solution
    Baudot, A
    Peyridieu, JF
    Boutron, P
    Mazuer, J
    Odin, J
    CRYOBIOLOGY, 1996, 33 (03) : 363 - 375
  • [37] Densities, Viscosities, and Refractive Indices of Poly(ethylene glycol) 300+1,2-Ethanediol, 1,2-Propanediol, 1,3-Propanediol, 1,3-Butanediol, or 1,4-Butanediol Binary Liquid Mixtures
    Azarang, Nasim
    Movagharnejad, Kamyar
    Pirdashti, Mohsen
    Ketabi, Mahnam
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2020, 65 (07): : 3448 - 3462
  • [38] Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate
    Sattayasamitsathit, Supalak
    Prasertsan, Poonsuk
    Methacanon, Pawadee
    PROCESS BIOCHEMISTRY, 2011, 46 (02) : 608 - 614
  • [39] Measurement of densities and excess molar volumes for (1,2-ethanediol, or 1,2-propanediol, or 1,2-butanediol plus water) at the temperatures (278.15, 288.15, 298.15, 308.15, and 318.15) K and for (2,3-butanediol plus water) at the temperatures (308.15, 313.15, and 318.15)
    Geyer, H
    Ulbig, P
    Görnert, M
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2000, 32 (12): : 1585 - 1596
  • [40] Hydrogenolysis of Glycerol to 1,2-Propanediol over Ru/TiO2 Catalyst
    Feng Jian
    Xiong Wei
    Jia Yun
    Wang Jinbo
    Liu Derong
    Chen Hua
    Li Xianjun
    CHINESE JOURNAL OF CATALYSIS, 2011, 32 (09) : 1545 - 1549