Probing Phonons in Nonpolar Semiconducting Nanowires with Raman Spectroscopy

被引:17
|
作者
Adu, Kofi W. [1 ,2 ]
Williams, Martin D. [3 ]
Reber, Molly [3 ]
Jayasingha, Ruwantha [3 ]
Gutierrez, Humberto R. [4 ]
Sumanasekera, Gamini U. [3 ,5 ]
机构
[1] Penn State Univ, Altoona Coll, Phys Dept, Atloona, PA 16601 USA
[2] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[3] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA
[4] Penn State Univ, Phys Dept, University Pk, PA 16802 USA
[5] Univ Louisville, Conn Ctr Renewable Energy Res, Louisville, KY 40292 USA
关键词
D O I
10.1155/2012/264198
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present recent developments in Raman probe of confined optical and acoustic phonons in nonpolar semiconducting nanowires, with emphasis on Si and Ge. First, a review of the theoretical spatial correlation phenomenological model widely used to explain the downshift and asymmetric broadening to lower energies observed in the Raman profile is given. Second, we discuss the influence of local inhomogeneous laser heating and its interplay with phonon confinement on Si and Ge Raman line shape. Finally, acoustic phonon confinement, its effect on thermal conductivity, and factors that lead to phonon damping are discussed in light of their broad implications on nanodevice fabrication.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Analysis of semiconductor surface phonons by Raman spectroscopy
    Esser, N.
    Applied Physics A: Materials Science and Processing, 1999, 69 (05): : 507 - 518
  • [22] Analysis of semiconductor surface phonons by Raman spectroscopy
    Esser, N
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (05): : 507 - 518
  • [23] Analysis of semiconductor surface phonons by Raman spectroscopy
    N. Esser
    Applied Physics A, 1999, 69 : 507 - 518
  • [24] Probing anharmonic phonons in WS2 van der Waals crystal by Raman spectroscopy and machine learning
    Okeke, Chisom
    Juma, Isaac
    Cobarrubia, Antonio
    Schottle, Nicholas
    Maddah, Hisham
    Mortazavi, Mansour
    Behura, Sanjay K.
    ISCIENCE, 2023, 26 (07)
  • [25] Raman-active phonon line profiles in semiconducting nanowires
    Adu, Kofi W.
    Gutierrez, Humberto R.
    Eklund, Peter C.
    VIBRATIONAL SPECTROSCOPY, 2006, 42 (01) : 165 - 175
  • [26] Probing single molecules by Raman spectroscopy
    Lakshminarayanan, K
    CURRENT SCIENCE, 1997, 73 (05): : 400 - 400
  • [27] Raman active phonons of identified semiconducting single-walled carbon nanotubes
    Paillet, M.
    Michel, T.
    Meyer, J. C.
    Popov, V. N.
    Henrard, L.
    Roth, S.
    Sauvajol, J. -L.
    PHYSICAL REVIEW LETTERS, 2006, 96 (25)
  • [28] RAMAN-SPECTROSCOPY OF ACOUSTIC PHONONS IN FIBONACCI SUPERLATTICES
    BAJEMA, K
    MERLIN, R
    SUPERLATTICES AND MICROSTRUCTURES, 1987, 3 (05) : 477 - 479
  • [29] Raman spectroscopy of phonons in optically confined semiconductor nanostructures
    Fainstein, A
    Jusserand, B
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (10) : S377 - S385
  • [30] Coherent Raman Spectroscopy of Equilibrium Phonons with Subwavenumber Resolution
    Senarathna, Dinusha
    Sylvester, Jeremy
    Neupane, Chandra
    Singhapurage, Helani
    Ganikhanov, Feruz
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (18): : 8720 - 8727