DETAILED 266 NM THOMSON SCATTERING MEASUREMENTS OF A LASER-HEATED PLASMA

被引:17
|
作者
TRACY, MD
DEGROOT, JS
ESTABROOK, KG
CAMERON, SM
机构
[1] LAWRENCE LIVERMORE NATL LAB, LIVERMORE, CA 94550 USA
[2] UNIV CALIF DAVIS, PLASMA RES GRP, DAVIS, CA 95616 USA
来源
PHYSICS OF FLUIDS B-PLASMA PHYSICS | 1992年 / 4卷 / 06期
关键词
D O I
10.1063/1.860066
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Collective Thomson scattering at 266 nm is used to obtain spatially resolved, two-dimensional electron density, temperature, and radial drift profiles of a collisional laser plasma (critical density, n(c) = 1 x 10(21) cm-3). An ultraviolet diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and refractive turning in the coronal region of interest, where electron densities approach n(c)/10. Laser plasmas of this type are important because they model some of the aspects of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths (t(L) greater-than-or-similar-to 10 nsec), where laser light is absorbed mostly in the corona. The experimental results and LASNEX [Comments Plasma Phys. Controlled Fusion 2, 51 (1975)] simulations agree within a percent standard deviation of 40% for electron density and 50% for electron temperature and radial drift velocity. Thus it is shown that the hydrodynamics equations with classical coefficients and the numerical approximations in LASNEX are valid models of laser-heated, highly collisional plasmas.
引用
收藏
页码:1576 / 1584
页数:9
相关论文
共 50 条
  • [41] Thomson scattering measurements in atmospheric plasma jets
    Gregori, G.
    Schein, J.
    Schwendinger, P.
    Kortshagen, U.
    Heberlein, J.
    Pfender, E.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2 -B): : 2286 - 2291
  • [42] Evidence for high-efficiency laser-heated hohlraum performance at 527 nm
    Stevenson, RM
    Oades, K
    Thomas, BR
    Schneider, M
    Slark, GE
    Suter, LJ
    Kauffman, R
    Hinkel, D
    Miller, MC
    PHYSICAL REVIEW LETTERS, 2005, 94 (05)
  • [43] HELIUM BLAST-WAVE MEASUREMENTS OF LASER-HEATED MICROSHELL TARGETS
    LEONARD, TA
    MAYER, FJ
    JOURNAL OF APPLIED PHYSICS, 1975, 46 (08) : 3562 - 3565
  • [44] PLASMA DIAGNOSTICS BY THOMSON SCATTERING OF A LASER BEAM
    GERRY, ET
    ROSE, DJ
    JOURNAL OF APPLIED PHYSICS, 1966, 37 (07) : 2715 - +
  • [45] Laser-heated diamond anvil cell system for photochemical reaction measurements
    Yusa, H
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (02): : 1309 - 1312
  • [46] Measurements of Electron Energy Probability Functions in inductively coupled plasma with laser Thomson scattering
    Seo, B. H.
    You, S. J.
    You, G. H.
    Kim, J. H.
    Yoo, Y. S.
    Seong, D. J.
    Chang, H. Y.
    JOURNAL OF INSTRUMENTATION, 2012, 7
  • [47] Comparison of Langmuir probe and laser Thomson scattering for plasma density and electron temperature measurements in HiPIMS plasma
    Ryan, Peter J.
    Bradley, James W.
    Bowden, Mark D.
    PHYSICS OF PLASMAS, 2019, 26 (04)
  • [48] Ar2 excimer emission from laser-heated plasma
    Takahashi, A
    Okada, T
    Maeda, M
    Uchino, K
    Nishisaka, T
    Sumitani, A
    Mizoguchi, H
    CLEO(R)/PACIFIC RIM 2001, VOL I, TECHNICAL DIGEST, 2001, : 218 - 219
  • [49] Laser-heated capillary discharge waveguides as tunable structures for laser-plasma acceleration
    Pieronek, C. V.
    Gonsalves, A. J.
    Benedetti, C.
    Bulanov, S. S.
    van Tilborg, J.
    Bin, J. H.
    Swanson, K. K.
    Daniels, J.
    Bagdasarov, G. A.
    Bobrova, N. A.
    Gasilov, V. A.
    Korn, G.
    Sasorov, P. V.
    Geddes, C. G. R.
    Schroeder, C. B.
    Leemans, W. P.
    Esarey, E.
    PHYSICS OF PLASMAS, 2020, 27 (09)
  • [50] Laser-Power-Induced Multiphonon Resonant Raman Scattering in Laser-Heated CdS Nanocrystal
    Sahoo, Satyaprakash
    Arora, A. K.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (12): : 4199 - 4203