PERIODIC LATTICES OF CHAOTIC DEFECTS

被引:3
|
作者
WILLEBOORDSE, FH
KANEKO, K
机构
[1] Department of Pure and Applied Sciences, University of Tokyo, Komaba
来源
PHYSICAL REVIEW E | 1995年 / 52卷 / 02期
关键词
D O I
10.1103/PhysRevE.52.1516
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A type of lattice in which chaotic defects are arranged periodically is reported for a coupled map model of open flow. We find that temporally chaotic defects are followed by spatial relaxation to an almost periodic state, when suddenly another defect appears. The distance between successive defects is found to be generally predetermined and diverging logarithmically when approaching a certain critical point. The phenomena are analyzed and shown to be explicable as the results of a boundary crisis for the spatially extended system.
引用
收藏
页码:1516 / 1519
页数:4
相关论文
共 50 条
  • [31] Encryption and decryption of images with chaotic map lattices
    Pisarchik, A. N.
    Flores-Carmona, N. J.
    Carpio-Valadez, M.
    CHAOS, 2006, 16 (03)
  • [32] Global synchronization in lattices of coupled chaotic systems
    Juang, Jonq
    Li, Chin-Lung
    Liang, Yu-Hao
    CHAOS, 2007, 17 (03)
  • [33] Clustering data by inhomogeneous chaotic map lattices
    Angelini, L
    De Carlo, F
    Marangi, C
    Pellicoro, M
    Stramaglia, S
    PHYSICAL REVIEW LETTERS, 2000, 85 (03) : 554 - 557
  • [34] Clusters of synchronization and bistability in lattices of chaotic neurons
    Huerta, R
    Bazhenov, M
    Rabinovich, MI
    EUROPHYSICS LETTERS, 1998, 43 (06): : 719 - 724
  • [35] Periodic binary harmonic functions on lattices
    Zaidenberg, Mikhail
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (02) : 225 - 265
  • [36] Inhomogeneous quantum antiferromagnetism on periodic lattices
    Jagannathan, A.
    Moessner, R.
    Wessel, Stefan
    PHYSICAL REVIEW B, 2006, 74 (18):
  • [37] Encapsulated spin function for periodic lattices
    Pétuaud-Létang, F
    Fritsch, A
    Bignonneau, G
    Ducasse, L
    THEORETICAL CHEMISTRY ACCOUNTS, 1998, 100 (5-6) : 314 - 323
  • [38] EXTENSIONAL MOTIONS OF SPATIALLY PERIODIC LATTICES
    KRAYNIK, AM
    REINELT, DA
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1992, 18 (06) : 1045 - 1059
  • [39] THEORY OF CHANNELING THROUGH PERIODIC LATTICES
    ROWLANDS, G
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (01): : 9 - 16
  • [40] On the almost periodic solutions of Lattices equations
    Ayachi, Moez
    APPLICABLE ANALYSIS, 2013, 92 (01) : 211 - 217