WIGNER QUANTUM OSCILLATORS - OSP(3/2) OSCILLATORS

被引:19
|
作者
PALEV, TD [1 ]
STOILOVA, NI [1 ]
机构
[1] INST NUCL ENERGY RES,BU-1784 SOFIA,BULGARIA
来源
关键词
D O I
10.1088/0305-4470/27/22/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The properties of the three-dimensional non-canonical oscillators osp(3/2) (introduced in J. Phys. A: Math. Gen. 27 (1994) 977) are studied further. The angular momentum M of the oscillators can take at most three values M = p - 1, p, p, + 1, which are either all integers or all half-integers. The coordinates anticommute with each other. Depending on the state space the energy spectrum can coincide or can be essentially different from those of the canonical oscillator. The ground state is in general degenerate.
引用
收藏
页码:7387 / 7401
页数:15
相关论文
共 50 条
  • [21] Quantum computation with harmonic oscillators
    Bartlett, SD
    Sanders, BC
    de Guise, H
    CLEO(R)/PACIFIC RIM 2001, VOL II, TECHNICAL DIGEST, 2001, : 404 - 405
  • [22] Nonadiabaticity of quantum harmonic oscillators
    Kim, Hyeong-Chan
    Lee, Youngone
    PHYSICS LETTERS A, 2022, 430
  • [23] Controllability of quantum harmonic oscillators
    Mirrahimi, M
    Rouchon, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 745 - 747
  • [24] Quantum computation with harmonic oscillators
    Bartlett, SD
    Sanders, BC
    Varcoe, BTH
    De Guise, H
    EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 344 - 347
  • [25] ON QUANTUM (Q-) OSCILLATORS
    GANGOPADHYAY, D
    ACTA PHYSICA POLONICA B, 1991, 22 (10): : 819 - 828
  • [26] COUPLED SUPERCONDUCTING QUANTUM OSCILLATORS
    SILVER, AH
    ZIMMERMAN, JE
    PHYSICAL REVIEW, 1967, 158 (02): : 423 - +
  • [27] PROJECTION OPERATORS FOR QUANTUM OSCILLATORS
    FERRELL, TL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (01): : 25 - 25
  • [28] ON STATISTICS OF THE ENSEMBLE OF OSCILLATORS UNDER EXCITATION .2. PARAMETRIC-EXCITATION OF LINEAR QUANTUM OSCILLATORS
    SAZONOV, VN
    STUCHEBRUKHOV, AA
    CHEMICAL PHYSICS, 1981, 56 (03) : 391 - 398
  • [29] Quantum Kerr oscillators' evolution in phase space: Wigner current, symmetries, shear suppression, and special states
    Oliva, Maxime
    Steuernagel, Ole
    PHYSICAL REVIEW A, 2019, 99 (03)
  • [30] Moyal equation-Wigner distribution functions for anharmonic oscillators
    Truong, T. T.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (10)