WIGNER QUANTUM OSCILLATORS - OSP(3/2) OSCILLATORS

被引:19
|
作者
PALEV, TD [1 ]
STOILOVA, NI [1 ]
机构
[1] INST NUCL ENERGY RES,BU-1784 SOFIA,BULGARIA
来源
关键词
D O I
10.1088/0305-4470/27/22/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The properties of the three-dimensional non-canonical oscillators osp(3/2) (introduced in J. Phys. A: Math. Gen. 27 (1994) 977) are studied further. The angular momentum M of the oscillators can take at most three values M = p - 1, p, p, + 1, which are either all integers or all half-integers. The coordinates anticommute with each other. Depending on the state space the energy spectrum can coincide or can be essentially different from those of the canonical oscillator. The ground state is in general degenerate.
引用
收藏
页码:7387 / 7401
页数:15
相关论文
共 50 条
  • [1] WIGNER QUANTUM OSCILLATORS
    PALEV, TD
    STOILOVA, NI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (03): : 977 - 983
  • [2] DIAMAGNETISM OF WIGNER OSCILLATORS
    MANOYAN, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (10): : 3035 - 3039
  • [3] Harmonic oscillators coupled by springs: Discrete solutions as a Wigner quantum system
    Lievens, S.
    Stoilova, N. I.
    Van der Jeugt, J.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (11)
  • [4] A linear chain of interacting harmonic oscillators: solutions as a Wigner Quantum System
    Lievens, S.
    Stoiloval, N. I.
    Van der Jeugt, J.
    [J]. 5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [5] From superpositions of oscillators to nonlinear deformations of osp(1/2; R)
    Debergh, N
    [J]. HELVETICA PHYSICA ACTA, 1999, 72 (5-6): : 377 - 385
  • [6] QUANTUM-THEORY OF ANHARMONIC OSCILLATORS - FROM INDEPENDENT OSCILLATORS TO SPHERICALLY COUPLED OSCILLATORS
    HIOE, FT
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (01): : 204 - 213
  • [7] QUANTUM WELL OSCILLATORS
    SOLLNER, TCLG
    TANNENWALD, PE
    PECK, DD
    GOODHUE, WD
    [J]. APPLIED PHYSICS LETTERS, 1984, 45 (12) : 1319 - 1321
  • [8] DIAGRAMS FOR QUANTUM OSCILLATORS
    FERRELL, TL
    [J]. AMERICAN JOURNAL OF PHYSICS, 1980, 48 (09) : 728 - 731
  • [9] ON FINITE QUANTUM OSCILLATORS
    Groza, V. A.
    Kachuryk, I. I.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2008, 53 (06): : 602 - 608
  • [10] ON PARARELATIVISTIC QUANTUM OSCILLATORS
    BECKERS, J
    DEBERGH, N
    NIKITIN, AG
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) : 3387 - 3392