DISTRIBUTED CODING FOR DATA REPRESENTATION OF BACKPROPAGATION NEURAL-NETWORK CLASSIFIERS

被引:1
|
作者
CHONG, CC
JIA, JC
机构
[1] Nanyang Technological University, School of Electrical and Electronic Engineering
关键词
BACKPROPAGATION; NEURAL NETS; PATTERN CLASSIFICATION;
D O I
10.1049/el:19951244
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new distributed input coding is derived by distributing the feature variables over a number of input nodes based on the distribution of the training data. Using this coding method representation, the range of each input node will be fully optimised; this enables the network to converge at a higher rate during training. The coding method also enables the network to maintain the generalisation capability of conventional normalisation coding.
引用
收藏
页码:1852 / 1854
页数:3
相关论文
共 50 条
  • [31] A comparison of decision tree and backpropagation neural network classifiers for land use classification
    Pal, M
    Mather, PM
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 503 - 505
  • [32] ON THE PROBABILISTIC-INTERPRETATION OF NEURAL-NETWORK CLASSIFIERS AND DISCRIMINATIVE TRAINING CRITERIA
    NEY, H
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (02) : 107 - 119
  • [33] Cross-validation with active pattern selection for neural-network classifiers
    Leisch, F
    Jain, LC
    Hornik, K
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (01): : 35 - 41
  • [34] Gravitational-wave selection effects using neural-network classifiers
    Gerosa, Davide
    Pratten, Geraint
    Vecchio, Alberto
    [J]. PHYSICAL REVIEW D, 2020, 102 (10)
  • [35] DISTRIBUTED NORMALIZATION INPUT CODING TO SPEED-UP TRAINING PROCESS OF BP NEURAL-NETWORK CLASSIFIER
    JIA, JC
    CHONG, CC
    [J]. ELECTRONICS LETTERS, 1995, 31 (15) : 1267 - 1269
  • [36] A Neural-network Enhanced Video Coding Framework beyond ECM
    Zhao, Yanchen
    He, Wenxuan
    Jia, Chuanmin
    Wang, Qizhe
    Li, Junru
    Li, Yue
    Lin, Chaoyi
    Zhang, Kai
    Zhang, Li
    Ma, Siwei
    [J]. 2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 605 - 605
  • [37] ESTIMATION OF END-TIDAL CARBON-DIOXIDE BY BACKPROPAGATION ARTIFICIAL NEURAL-NETWORK
    BARRIE, J
    BEATTY, PCW
    CAMPBELL, IT
    MEAKIN, G
    [J]. BRITISH JOURNAL OF ANAESTHESIA, 1994, 72 (04) : P490 - P491
  • [38] AN ALL-ANALOG EXPANDABLE NEURAL-NETWORK LSI WITH ON-CHIP BACKPROPAGATION LEARNING
    MORIE, T
    AMEMIYA, Y
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1994, 29 (09) : 1086 - 1093
  • [39] A BACKPROPAGATION NEURAL-NETWORK MODEL OF LUMBAR MUSCLE RECRUITMENT DURING MODERATE STATIC EXERTIONS
    NUSSBAUM, MA
    CHAFFIN, DB
    MARTIN, BJ
    [J]. JOURNAL OF BIOMECHANICS, 1995, 28 (09) : 1015 - 1024
  • [40] LAI INVERSION USING A BACKPROPAGATION NEURAL-NETWORK TRAINED WITH A MULTIPLE-SCATTERING MODEL
    SMITH, JA
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1993, 31 (05): : 1102 - 1106