RANDOM VIBRATION RESPONSE OF A SYSTEM HAVING MANY DEGREES OF FREEDOM

被引:3
|
作者
ROBSON, JD
机构
来源
AERONAUTICAL QUARTERLY | 1966年 / 17卷
关键词
D O I
10.1017/S000192590000367X
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
引用
收藏
页码:21 / &
相关论文
共 50 条
  • [41] Investigation of vibration and ride characteristics of a five degrees of freedom vehicle suspension system
    Rahman, M. Shafiqur
    Kibria, Khan Muhammad Golam
    [J]. 10TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING (ICME 2013), 2014, 90 : 96 - 102
  • [42] STABILITY ANALYSIS OF MECHANISMS HAVING UNPOWERED DEGREES OF FREEDOM
    BOROVAC, B
    VUKOBRATOVIC, M
    STOKIC, D
    [J]. ROBOTICA, 1989, 7 : 349 - 357
  • [43] THE COAGULATION THEORY FOR PARTICLES HAVING INTERNAL DEGREES OF FREEDOM
    PORTNOV, LP
    FILIPPOV, GG
    GORBUNOV, AI
    SLINKO, MG
    [J]. DOKLADY AKADEMII NAUK SSSR, 1986, 291 (03): : 652 - 654
  • [44] Vibration control of two degrees of freedom system using variable inertia vibration absorbers: Modeling and simulation
    Megahed, S. M.
    El-Razik, A. Kh Abd
    [J]. JOURNAL OF SOUND AND VIBRATION, 2010, 329 (23) : 4841 - 4865
  • [45] Linear One-to-Many (OTM) system Many degrees of freedom independently actuated by one electric motor
    Hunt, Thane R.
    Berthelette, Christopher J.
    Popovic, Marko B.
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGIES FOR PRACTICAL ROBOT APPLICATIONS (TEPRA), 2013,
  • [46] SLOW RELAXATION AND PHASE-SPACE PROPERTIES OF A CONSERVATIVE SYSTEM WITH MANY DEGREES OF FREEDOM
    FLACH, S
    MUTSCHKE, G
    [J]. PHYSICAL REVIEW E, 1994, 49 (06): : 5018 - 5024
  • [47] Random response of a two-degree-of-freedom rotational vibration energy harvester
    Tian, Yanping
    Tang, Bo
    Wang, Zonghui
    Lu, Xinpei
    Xu, Ming
    [J]. ACTA MECHANICA, 2023, 234 (11) : 5551 - 5564
  • [48] Approximately Optimal Stabilization of a Gyroscopic System with Many Degrees of Freedom and Slowly Varying Parameters
    Zabolotnov Y.M.
    [J]. Gyroscopy and Navigation, 2023, 14 (1) : 89 - 95
  • [49] Analysis of random vibration response of inertial navigation vibration reduction system
    Wang, Ping
    Zhang, Guangpeng
    Wei, Fei
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (10)
  • [50] Second order phase transition in a highly chaotic Hamiltonian system with many degrees of freedom
    Yamaguchi, YY
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (04): : 839 - 847