STEIN CONFIDENCE SETS AND THE BOOTSTRAP

被引:0
|
作者
BERAN, R [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
关键词
SIGNAL; WHITE NOISE; COVERAGE PROBABILITY; GEOMETRICAL RISK;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Stein estimator ($) over cap xi(s) dominates the sample mean, under quadratic loss, in the N(xi, I) model of dimension q greater than or equal to 3. A Stein confidence set is a sphere of radius ($) over cap d centered at ($) over cap xi(s). The radius ($) over cap d is constructed to make the coverage probability converge to alpha as dimension q increases. This paper studies properties of Stein confidence sets for moderate to large values of 4. Our main results are: Stein confidence sets dominate the classical confidence spheres for xi under a geometrical risk criterion as q --> oo. Correct bootstrap critical values for Stein confidence sets require resampling from a N(($) over cap xi, I) distribution, where \($) over cap xi\ estimates \xi\ well. Simple asymptotic or bootstrap constructions of ($) over cap d result in a coverage probability error of O(q(-1/2)). A more sophisticated bootstrap approach reduces coverage probability error to O(q(-1)). The faster rate of convergence manifests itself numerically for q greater than or equal to 5.
引用
收藏
页码:109 / 127
页数:19
相关论文
共 50 条
  • [41] Bootstrap confidence intervals for tail indices
    Caers, J
    Beirlant, J
    Vynckier, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 26 (03) : 259 - 277
  • [42] Bootstrap confidence intervals for the Pareto index
    Guillou, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (01) : 211 - 226
  • [43] The Automatic Construction of Bootstrap Confidence Intervals
    Efron, Bradley
    Narasimhan, Balasubramanian
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (03) : 608 - 619
  • [44] Inconsistent hybrid bootstrap confidence regions
    Keener, Robert W.
    Sun, Hokeun
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 107 : 115 - 121
  • [45] Sequential iterated bootstrap confidence intervals
    Lee, SMS
    Young, GA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (01): : 235 - 251
  • [46] Bootstrap confidence levels for phylogenetic trees
    Efron, B
    Halloran, E
    Holmes, S
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) : 7085 - 7090
  • [47] WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS
    Mackinnon, James G.
    [J]. ACTUALITE ECONOMIQUE, 2020, 96 (04): : 721 - 743
  • [48] On the Admissibility of Simultaneous Bootstrap Confidence Intervals
    Gao, Xin
    Konietschke, Frank
    Li, Qiong
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [49] Horizon confidence sets
    Fosten, Jack
    Gutknecht, Daniel
    [J]. EMPIRICAL ECONOMICS, 2021, 61 (02) : 667 - 692
  • [50] Horizon confidence sets
    Jack Fosten
    Daniel Gutknecht
    [J]. Empirical Economics, 2021, 61 : 667 - 692