SIGN-EMBEDDINGS OF L1

被引:0
|
作者
ROSENTHAL, HP
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:155 / 165
页数:11
相关论文
共 50 条
  • [1] SIGN-EMBEDDINGS OF L1N
    ELTON, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 279 (01) : 113 - 124
  • [2] Weak embeddings of L1
    Mykhaylyuk, Volodymyr
    Popov, Mikhail
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2006, 32 (04): : 1139 - 1152
  • [3] ISOMETRIC EMBEDDINGS IN L1
    DOR, LE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (03): : A360 - A360
  • [4] POTENTIALS AND ISOMETRIC EMBEDDINGS IN L1
    DOR, LE
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1976, 24 (3-4) : 260 - 268
  • [5] IMPROVED LOWER BOUNDS FOR EMBEDDINGS INTO L1
    Krauthgamer, Robert
    Rabani, Yuval
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 38 (06) : 2487 - 2498
  • [6] Improved lower bounds for embeddings into L1
    Krauthgamer, Robert
    Rabani, Yuval
    [J]. PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 1010 - 1017
  • [7] Embeddings of Lipschitz-free spaces into l1
    Aliaga, Ramon J.
    Petitjean, Colin
    Prochazka, Antonin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (06)
  • [8] EMBEDDINGS OF ORLICZ-LORENTZ SPACES INTO L1
    Prochno, J.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (01) : 59 - 70
  • [9] Tight Bounds for l1 Oblivious Subspace Embeddings
    Wang, Ruosong
    Woodruff, David P.
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (01)
  • [10] Some remarks on L1 embeddings in the subelliptic setting
    Krantz, Steven G.
    Peloso, Marco M.
    Spector, Daniel
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202