BOUNDARY-VALUE-PROBLEMS FOR THE STATIONARY VLASOV-MAXWELL SYSTEM

被引:59
|
作者
POUPAUD, F
机构
[1] CNRS, Département de Mathématiques, Université de Nice Parc Valrose
关键词
D O I
10.1515/form.1992.4.499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Vlasov-Maxwell equations provide a kinetic description of the flow of particles in a self-consistent electromagnetic field. The aim of this paper is to prove the existence of stationary solutions for boundary value problems with arbitrary large data. The main idea consists in using explicit upper solutions for the Vlasov equation that allow to bound the particles concentration and flux. A key point is that the electric field is repulsive. The mathematical analysis is first given for the relativistic Vlasov-Maxwell system. Next, the results are extended to classic mechanics, systems with several species of particles and Boltzmann-Vlasov-Poisson problems.
引用
收藏
页码:499 / 527
页数:29
相关论文
共 50 条
  • [21] On the Vlasov-Maxwell equations
    Parsa, Z
    Zadorozhny, V
    [J]. 2005 IEEE PARTICLE ACCELERATOR CONFERENCE (PAC), VOLS 1-4, 2005, : 3042 - 3044
  • [22] LINEARIZED SYSTEM OF VLASOV-MAXWELL EQUATIONS.
    Aslamazyan, E.I.
    [J]. Moscow University computational mathematics and cybernetics, 1984, (02) : 78 - 81
  • [23] A new approach to study the Vlasov-Maxwell system
    Klainerman, S
    Staffilani, G
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2002, 1 (01) : 103 - 125
  • [24] ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG MAGNETIC FIELD
    Filbet, Francis
    Xiong, Tao
    Sonnendrucker, Eric
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (02) : 1030 - 1055
  • [25] THE CLASSICAL LIMIT OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    SCHAEFFER, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (03) : 403 - 421
  • [26] A sharp stability criterion for the Vlasov-Maxwell system
    Lin, Zhiwu
    Strauss, Walter A.
    [J]. INVENTIONES MATHEMATICAE, 2008, 173 (03) : 497 - 546
  • [27] A STABILITY RESULT FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    KRUSE, KO
    REIN, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 121 (02) : 187 - 203
  • [28] CONCENTRATING SOLUTIONS OF THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    Ben-Artzi, Jonathan
    Calogero, Simone
    Pankavich, Stephen
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (02) : 377 - 392
  • [29] A TOY MODEL FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    Ben-Artzi, Jonathan
    Pankavich, Stephen
    Zhang, Junyong
    [J]. KINETIC AND RELATED MODELS, 2022, 15 (03) : 341 - 354
  • [30] The Darwin approximation of the relativistic Vlasov-Maxwell system
    Bauer, S
    Kunze, M
    [J]. ANNALES HENRI POINCARE, 2005, 6 (02): : 283 - 308