DAMPING OF NUCLEAR COLLECTIVE MOTIONS WITHIN THE METHOD OF PHASE-SPACE MOMENTS OF THE WIGNER DISTRIBUTION FUNCTION

被引:1
|
作者
MIKHAILOV, IN
PIPEROVA, J
DITORO, M
SMERZI, A
机构
[1] LAB NAZL SUD,DIPARTIMENTO FIS,CATANIA,ITALY
[2] LAB NAZL SUD,INFN,CATANIA,ITALY
关键词
D O I
10.1016/0375-9474(94)90189-9
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The semiclassical method of the equations of motion for the phase-space moments of the Wigner function is extended to the inclusion of damping mechanisms. The gross structure of the strength function is obtained going beyond the scaling approximation. Two-body correlations are introduced through an extended relaxation-time approximation. A realistic Skyrme-type interaction is used to derive the self-consistent potential. An application is shown to the damping of the giant monopole resonance (GMR) in Pb-208. The calculated spreading widths with a relaxation-time parameter determined microscopically for the ''collisional'' damping are very much below the observed values. On the other side, consistency is found between the description of the widths of monopole, quadrupole and octupole giant resonances with an empirical value of the relaxation-time parameter.
引用
收藏
页码:269 / 282
页数:14
相关论文
共 50 条
  • [31] A method to determine the phase-space distribution of a pulsed molecular beam
    Mooij, Maarten C.
    Bethlem, Hendrick L.
    Boeschoten, Alexander
    Borschevsky, Anastasia
    Fikkers, Ties H.
    Hoekstra, Steven
    van Hofslot, Joost W. F.
    Jungmann, Klaus
    Marshall, Virginia R.
    Meijknecht, Thomas B.
    Timmermans, Rob G. E.
    Touwen, Anno
    Ubachs, Wim
    Willmann, Lorenz
    NL eEDM collaboration
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2025, 58 (01)
  • [32] Wigner function for a generalized model of a parametric oscillator: Phase-space tristability, competition and nonclassical effects
    Kheruntsyan, KV
    Krahmer, DS
    Kryuchkyan, GY
    Petrossian, KG
    OPTICS COMMUNICATIONS, 1997, 139 (1-3) : 157 - 164
  • [33] WIGNER-KIRKWOOD EXPANSION OF THE PHASE-SPACE DENSITY FOR SEMI-INFINITE NUCLEAR-MATTER
    DURAND, M
    SCHUCK, P
    VINAS, X
    PHYSICAL REVIEW A, 1987, 36 (04): : 1824 - 1833
  • [36] Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium
    Yura, HT
    Thrane, L
    Andersen, PE
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2000, 17 (12): : 2464 - 2474
  • [37] Moments of a pulse propagating with dispersion and damping: a phase space based approximation method
    Okopal, Greg
    Loughlin, Patrick
    JOURNAL OF MODERN OPTICS, 2009, 56 (18-19) : 2133 - 2136
  • [38] SCALE CONVERSION OF PHASE-SPACE AND INTEGRAL-EQUATIONS FOR RADIAL FUNCTION OF DISTRIBUTION
    KASIMOV, NS
    SYSOEV, VM
    ZHURNAL FIZICHESKOI KHIMII, 1991, 65 (03): : 819 - 823
  • [39] The validation of made-to-measure method for reconstruction of phase-space distribution functions
    Tagawa, H.
    Gouda, N.
    Yano, T.
    Hara, T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 463 (01) : 927 - 951
  • [40] QUANTUM-MECHANICS IN PHASE SPACE .1. UNICITY OF WIGNER DISTRIBUTION FUNCTION
    KRUGER, JG
    POFFYN, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 85 (01) : 84 - 100