TOUGHNESS CHARACTERIZATION OF IRON-BASED POWDER MATERIAL

被引:7
|
作者
MALYSHENKO, AA
PODREZOV, YN
FIRSTOV, SA
机构
[1] Frantsevich Institute for Problems of Material Science (IPMS), Ukranian Academy of Sciences, Kiev -142
关键词
D O I
10.1016/0167-8442(94)00029-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fracture mode dependence on the material structure is applied to characterize the fracture toughness of iron-based powder material. The porosity parameter is varied to exhibit the change in the observed fracture mechanism and hence the fracture toughness of powder materials. Useful information is obtained to enhance the production technology in terms of porosity content and inter-particle contacts. The proposed simulation procedure provides data that are in good agreement with experiments and makes it possible to predict the mechanical behavior of powder materials with different structures. Complex dependence of fracture toughness on the porosity of powder materials is reflected by competing microfracture mechanisms and inherent peculiar behavior of the compacting powder.
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [31] Iron-based shape memory alloy strips for strengthening RC members: Material behavior and characterization
    Shahverdi, Moslem
    Michels, Julien
    Czaderski, Christoph
    Motavalli, Masoud
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 173 : 586 - 599
  • [32] Influence of heat treatment on strength and toughness of laser cladding iron-based coatings
    Chen, Wenjing
    Cai, Qing
    Luo, Zhaoyang
    Wu, Yibin
    MATERIALS LETTERS, 2023, 335
  • [33] Evaluations of Iron-based Material Expressed by Magnetic Transfer Function
    Yamada, Koji
    Luo, Jiaolian
    Shimoji, Hiroyasu
    Nakahata, Yasushi
    Borkowski, Bartosz E.
    Todaka, Takashi
    Enokizono, Masato
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (9B): : 85 - 88
  • [34] Thermal fatigue behavior of an iron-based laser sintered material
    Wang, Y.
    Bergstrom, J.
    Burman, C.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 513-14 : 64 - 71
  • [35] Anisotropic Superconducting Gap in Optimally Doped Iron-Based Material
    Pal, A.
    Chinotti, M.
    Chu, J-H
    Kuo, H-H
    Fisher, I. R.
    Degiorgi, L.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2020, 33 (08) : 2313 - 2318
  • [36] Study on high-chromium iron-based sintered material
    Wang, Caide
    Cao, Shunhua
    Fenmo Yejin Jishu/Powder Metallurgy Technology, 1998, 16 (02): : 116 - 118
  • [37] Nondestructive evaluations of iron-based material by magnetic diagnosis tools
    Yamada, Koji
    Shoji, Shin-Ichi
    Isobe, Yosihiro
    2000, IOS Press, Amsterdam (11)
  • [38] Effect of sintering parameters on warm compacted iron-based material
    李元元
    肖志瑜
    倪东惠
    夏伟
    陈维平
    TransactionsofNonferrousMetalsSocietyofChina, 2003, (06) : 1333 - 1337
  • [39] Effect of sintering parameters on warm compacted iron-based material
    Li, YY
    Xiao, ZY
    Ngai, TWL
    Xia, W
    Chen, WP
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2003, 13 (06) : 1333 - 1337
  • [40] Effect of sintering parameters on warm compacted iron-based material
    Li, Yuan-Yuan
    Xiao, Zhi-Yu
    Ngai, Tungwai Leo
    Xia, Wei
    Chen, Wei-Ping
    Transactions of Nonferrous Metals Society of China (English Edition), 2003, 13 (06): : 1333 - 1337