ON THE EUCLIDEAN DISTANCE BETWEEN BIASED-ESTIMATORS

被引:5
|
作者
TRENKLER, D [1 ]
TRENKLER, G [1 ]
机构
[1] UNIV HANOVER, FACHBEREICH WIRTSCHAFTSWISSENSCH OKON & STAT, D-3000 HANOVER, FED REP GER
关键词
D O I
10.1080/03610928408828683
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:273 / 284
页数:12
相关论文
共 50 条
  • [21] ON THE RELATION BETWEEN GRAPH DISTANCE AND EUCLIDEAN DISTANCE IN RANDOM GEOMETRIC GRAPHS
    Diaz, J.
    Mitsche, D.
    Perarnau, G.
    Perez-Gimenez, X.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (03) : 848 - 864
  • [22] Analysis of the difference between the Euclidean distance and the actual road distance in Brazil
    Schmitz Goncalves, Daniel Neves
    Goncalves, Carolinne de Morais
    de Assis, Tassia Faria
    da Silva, Marelino Aurelio
    17TH MEETING OF THE EURO WORKING GROUP ON TRANSPORTATION, EWGT2014, 2014, 3 : 876 - 885
  • [23] Euclidean Distance Between Haar Orthogonal and Gaussian Matrices
    Gonzalez-Guillen, C. E.
    Palazuelos, C.
    Villanueva, I.
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (01) : 93 - 118
  • [24] Comparing populations based on squared Euclidean distance between
    Polko-Zajac, Dominika
    12TH PROFESSOR ALEKSANDER ZELIAS INTERNATIONAL CONFERENCE ON MODELLING AND FORECASTING OF SOCIO-ECONOMIC PHENOMENA, 2018, 1 : 385 - 394
  • [25] Optimization of the Hausdorff distance between sets in Euclidean space
    V. N. Ushakov
    A. S. Lakhtin
    P. D. Lebedev
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 222 - 238
  • [26] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 291 - 308
  • [27] Euclidean Distance Between Haar Orthogonal and Gaussian Matrices
    C. E. González-Guillén
    C. Palazuelos
    I. Villanueva
    Journal of Theoretical Probability, 2018, 31 : 93 - 118
  • [28] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 : S222 - S238
  • [29] Function Analysis of the Euclidean Distance between Probability Distributions
    Kim, Namyong
    ENTROPY, 2018, 20 (01):
  • [30] A Comparison between Quaternion Euclidean Product Distance and Cauchy Schwartz Inequality Distance
    Liu, Di
    Sun, Dong-mei
    Qiu, Zheng-ding
    ADVANCES IN COMPUTATIONAL SCIENCE AND ENGINEERING, 2009, 28 : 129 - 137