Uniformization of the leaves of a rational vector field

被引:18
|
作者
Candel, A [1 ]
GomezMont, X [1 ]
机构
[1] CIMAT,GUANAJUATO 36000,MEXICO
关键词
holomorphic foliations; uniformization;
D O I
10.5802/aif.1488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the analytic structure of the leaves of a holomorphic foliation by curves on a compact complex manifold. We show that if every leaf is a hyperbolic surface then they can be simultaneously uniformized in a continuous manner. In case the manifold is complex projective space a sufficient condition is that there are no algebraic leaf.
引用
收藏
页码:1123 / &
页数:12
相关论文
共 50 条
  • [21] Application of vector rational interpolation to erroneous motion field estimation for error concealment
    Tsekeridou, S
    Cheikh, FA
    Gabbouj, M
    Pitas, I
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 48 - 52
  • [22] Rational extrapolation for the PageRank vector
    Brezinski, C.
    Redivo-Zaglia, M.
    MATHEMATICS OF COMPUTATION, 2008, 77 (263) : 1585 - 1598
  • [23] Vector Rational Number Reconstruction
    Bright, Curtis
    Storjohann, Arne
    ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2011, : 51 - 57
  • [24] VECTOR ITERATIONS, RATIONAL ITERATIONS
    LAURENS, J
    LEFERRAND, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (05): : 631 - 636
  • [25] Vector rational error correction
    Kozicki, S
    Tinsley, PA
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1999, 23 (9-10): : 1299 - 1327
  • [26] Positive Rational Nodal Leaves in Surfaces
    Edileno de Almeida Santos
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 237 - 251
  • [27] Positive Rational Nodal Leaves in Surfaces
    Santos, Edileno de Almeida
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 237 - 251
  • [28] Enumerative sequences of leaves in rational trees
    Bassino, F
    Beal, MP
    Perrin, D
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1997, 1256 : 76 - 86
  • [29] Rational surfaces and moduli spaces of vector bundles on rational surfaces
    L. Costa
    R. M. Miró-Roig
    Archiv der Mathematik, 2002, 78 : 249 - 256
  • [30] Rational surfaces and moduli spaces of vector bundles on rational surfaces
    Costa, L
    Miró-Roig, RM
    ARCHIV DER MATHEMATIK, 2002, 78 (03) : 249 - 256