VIBRATION-BASED DAMAGE DETECTION IN A BEAM STRUCTURE WITH MULTIPLE DAMAGE LOCATIONS

被引:16
|
作者
Rucevskis, Sandris [1 ]
Wesolowski, Miroslaw [1 ]
Chate, Andris [1 ]
机构
[1] Riga Tech Univ, Inst Mat & Struct, Azenes St 16-323, LV-1048 Riga, Latvia
关键词
damage detection; dynamic response; mode shape curvature; scanning laser vibrometer;
D O I
10.3846/1648-7788.2009.13.61-71
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
During the last two decades structural damage identification using dynamic parameters of the structure has become an important research area for civil, mechanical, and aerospace engineering communities. The basic idea of the vibration-based damage detection methods is that a damage as a combination of different failure modes in the form of loss of local stiffness in the structure alters its dynamic characteristics, i.e., the modal frequencies, mode shapes, and modal damping values. A great variety of methods have been proposed for damage detection by using dynamic structure parameters; however, most of them require modal data of the healthy state of structure as a reference. In this paper a vibration-based damage detection method, which uses the mode shape information determined from only the damaged state of the structure is proposed. To establish the method, two aluminium beams containing different sizes of mill-cut damage at a single location as well as two aluminium beams containing different sizes of mill-cut damage at multiple locations are examined. The experimental modal frequencies and the corresponding mode shapes for the first 15 flexural modes are obtained by using a scanning laser vibrometer with a PZT actuator. From the mode shapes, mode shape curvatures are obtained by using a central difference approximation. In order to exclude the influence of measurement noise on the modal data and misleading damage indices, it is proposed to use the sum of mode shape curvature squares for each mode. With the example of the beams with free-free and clamped boundary conditions, it is shown that the mode shape curvature squares can be used to detect damage in the structures. The extent of mill-cut damage is identified via the modal frequencies by using mixed numerical-experimental technique. The method is based on the minimization of the discrepancy between the numerically calculated and the experimentally measured frequencies. The numerical frequencies are calculated by employing a finite-element model for beam with introduced damage. Further, by using the response surface approach, a relationship (second-order polynomial function) between the modal frequencies and the damage extent is constructed. The damage extent is obtained by solving the minimization problem.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条
  • [21] A Hybrid Method for Vibration-Based Bridge Damage Detection
    Gonen, Semih
    Erduran, Emrah
    REMOTE SENSING, 2022, 14 (23)
  • [22] An Investigation on Vibration-based Damage Detection in Circular Plates
    Trendafoilova, I.
    Gorman, D. G.
    Manoach, E.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2009, 8 (04): : 291 - 302
  • [23] Exploiting Spatial Sparsity in Vibration-Based Damage Detection
    Smith, Chandler
    Hernandez, Eric M.
    STRUCTURAL HEALTH MONITORING & DAMAGE DETECTION, VOL 7, 2017, : 1 - 7
  • [24] Vibration-based Damage Detection Algorithm for WTT Structures
    Tuan-Cuong Nguyen
    Kim, Tae-Hwan
    Choi, Sang-Hoon
    Ryu, Joo-Young
    Kim, Jeong-Tae
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, AND CIVIL INFRASTRUCTURE 2016, 2016, 9804
  • [25] Numerical evaluation for vibration-based damage detection in wind turbine tower structure
    Tuan-Cuong Nguyen
    Thanh-Canh Huynh
    Kim, Jeong-Tae
    WIND AND STRUCTURES, 2015, 21 (06) : 657 - 675
  • [26] Vibration-based damage detection in beam structures with multiple cracks: modal curvature vs. modal flexibility methods
    Altunisik, Ahmet Can
    Okur, Fatih Yesevi
    Karaca, Sebahat
    Kahya, Volkan
    NONDESTRUCTIVE TESTING AND EVALUATION, 2019, 34 (01) : 33 - 53
  • [27] A Review on Vibration-Based Damage Detection Methods for Civil Structures
    Sun, Xutao
    Ilanko, Sinniah
    Mochida, Yusuke
    Tighe, Rachael C.
    VIBRATION, 2023, 6 (04): : 843 - 875
  • [28] Assessment of vibration-based damage detection for an integral abutment bridge
    Siddique, A. B.
    Sparling, B. F.
    Wegner, L. D.
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2007, 34 (03) : 438 - 452
  • [29] An optimization study of the ALAVR vibration-based damage detection method
    Trickey, S
    Todd, M
    Seaver, M
    PROCEEDINGS OF IMAC-XX: STRUCTURAL DYNAMICS VOLS I AND II, 2002, 4753 : 147 - 152
  • [30] Damage detection in asymmetric buildings using vibration-based techniques
    Wang, Y.
    Thambiratnam, D. P.
    Chan, T. H. T.
    Nguyen, A.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (05):