COUNTING COLORFUL MULTIDIMENSIONAL TREES

被引:19
|
作者
ADIN, RM [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST MATH,JERUSALEM,ISRAEL
关键词
AMS subject classification code (1991): 05C50; 05C05; 05C30; 05C65; 15A18;
D O I
10.1007/BF01285814
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a disjoint union of r finite sets V1,...,V(tau) ("colors"). A collection T of subsets of V is colorful if each member if T contains at most one point of each color. A k-dimensional colorful tree is a colorful collection T of subsets of V, each of size k + 1, such that if we add to T all the colorful subsets of V of size k or less, we get a Q-acyclic simplicial complex DELTA(T). We count (using the Binet-Cauchy theorem) the k-dimensional colorful trees on V (for all k), where each tree T is counted with weight \H(k-1)BAR(DELTA(T)\2 (H* = reduced homology). The result confirms, in a way, a formula suggested by Bolker (for k = r - 1). It extends, on one hand, a result of Kalai on weighted counting of k-dimensional trees and, on the other hand, enumeration formulas for multi-partite (1-dimensional) trees. All these results are extensions of Cayley's celebrated tree-counting formula, now 100 years old.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 50 条
  • [41] Multidimensional Measure Matching for Crowd Counting
    Lin, Hui
    Hong, Xiaopeng
    Ma, Zhiheng
    Wang, Yaowei
    Meng, Deyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [42] A counting multidimensional innovation index for SMEs
    Pereira, Nuno Campos
    Araujo, Nuno
    Costa, Leonardo
    BENCHMARKING-AN INTERNATIONAL JOURNAL, 2018, 25 (01) : 2 - 23
  • [43] APPROXIMATELY COUNTING AND SAMPLING SMALL WITNESSES USING A COLORFUL DECISION ORACLE
    Dell H.
    Lapinskas J.
    Meeks K.
    SIAM Journal on Optimization, 2022, 32 (03) : 849 - 899
  • [44] Stochastic Enumeration Method for Counting Trees
    Vaisman, Radislav
    Kroese, Dirk P.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (01) : 31 - 73
  • [45] COUNTING LABELS IN BINARY-TREES
    SPRUGNOLI, R
    BIT, 1990, 30 (01): : 62 - 69
  • [46] Counting the number of spanning trees of graphs
    Ghorbani, M.
    Bani-Asadi, E.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 4 (01): : 111 - 121
  • [47] INDIRECT COUNTING TREES IN LINEAR GRAPHS
    GUARDABASSI, G
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1971, 291 (02): : 101 - +
  • [48] Counting unlabeled k-trees
    Gainer-Dewar, Andrew
    Gessel, Ira M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 126 : 177 - 193
  • [49] Counting minimum weight spanning trees
    Broder, AZ
    Mayr, EW
    JOURNAL OF ALGORITHMS, 1997, 24 (01) : 171 - 176
  • [50] Counting overlattices in automorphism groups of trees
    Lim, Seonhee
    GEOMETRIAE DEDICATA, 2006, 118 (01) : 1 - 21