COUNTING COLORFUL MULTIDIMENSIONAL TREES

被引:19
|
作者
ADIN, RM [1 ]
机构
[1] HEBREW UNIV JERUSALEM,INST MATH,JERUSALEM,ISRAEL
关键词
AMS subject classification code (1991): 05C50; 05C05; 05C30; 05C65; 15A18;
D O I
10.1007/BF01285814
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a disjoint union of r finite sets V1,...,V(tau) ("colors"). A collection T of subsets of V is colorful if each member if T contains at most one point of each color. A k-dimensional colorful tree is a colorful collection T of subsets of V, each of size k + 1, such that if we add to T all the colorful subsets of V of size k or less, we get a Q-acyclic simplicial complex DELTA(T). We count (using the Binet-Cauchy theorem) the k-dimensional colorful trees on V (for all k), where each tree T is counted with weight \H(k-1)BAR(DELTA(T)\2 (H* = reduced homology). The result confirms, in a way, a formula suggested by Bolker (for k = r - 1). It extends, on one hand, a result of Kalai on weighted counting of k-dimensional trees and, on the other hand, enumeration formulas for multi-partite (1-dimensional) trees. All these results are extensions of Cayley's celebrated tree-counting formula, now 100 years old.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 50 条
  • [1] Colorful triangle counting and a MAPREDUCE implementation
    Pagh, Rasmus
    Tsourakakis, Charalampos E.
    INFORMATION PROCESSING LETTERS, 2012, 112 (07) : 277 - 281
  • [2] Counting colorful necklaces and bracelets in three colors
    Bernstein, Dennis S.
    Kouba, Omran
    AEQUATIONES MATHEMATICAE, 2019, 93 (06) : 1183 - 1202
  • [3] Counting colorful necklaces and bracelets in three colors
    Dennis S. Bernstein
    Omran Kouba
    Aequationes mathematicae, 2019, 93 : 1183 - 1202
  • [4] Counting colorful necklaces and bracelets in three colors
    Bernstein, Dennis S.
    Kouba, Omran
    arXiv, 2019,
  • [5] MULTIDIMENSIONAL TREES
    BALDWIN, WA
    STRAWN, GO
    THEORETICAL COMPUTER SCIENCE, 1991, 84 (02) : 293 - 311
  • [6] COUNTING MULTIDIMENSIONAL POLYOMINOES
    LUNNON, WF
    COMPUTER JOURNAL, 1975, 18 (04): : 366 - 367
  • [7] Colorful isomorphic spanning trees in complete graphs
    Constantine, Gregory M.
    ANNALS OF COMBINATORICS, 2005, 9 (02) : 163 - 167
  • [8] Colorful Isomorphic Spanning Trees in Complete Graphs
    Gregory M. Constantine
    Annals of Combinatorics, 2005, 9 : 163 - 167
  • [9] Colorful Star Motif Counting: Concepts, Algorithms and Applications
    Qin, Hongchao
    Sen, Gao
    Li, Rong-Hua
    Chen, Hongzhi
    Yuan, Ye
    Wang, Guoren
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (03) : 1105 - 1125
  • [10] A Counting Logic for Trees
    Barcenas, Everardo
    COMPUTACION Y SISTEMAS, 2015, 19 (02): : 407 - 422