RADII PROBLEMS FOR GENERALIZED SECTIONS OF CONVEX-FUNCTIONS

被引:3
|
作者
FOURNIER, R [1 ]
SILVERMAN, H [1 ]
机构
[1] COLL CHARLESTON,DEPT MATH,CHARLESTON,SC 29424
关键词
D O I
10.2307/2048485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classical theorem of Szego states that for functions [GRAPHICS] convex in \z\ < 1, the sequence of partial sums [GRAPHICS] must be convex in \z\ < 1/4. For the more general family consisting of functions of the form [GRAPHICS] where {n(k)} denotes an increasing (finite or infinite) sequence of integers (greater-than-or-equal-to 2), we find the radius of convexity (almost-equal-to 0.21) and the radius of starlikeness (almost-equal-to 0.37). The extremal function in both cases is [GRAPHICS] associated with the convex function [GRAPHICS].
引用
收藏
页码:101 / 107
页数:7
相关论文
共 50 条