LATTICE VERTEX POLYTOPES WITH INTERIOR LATTICE POINTS

被引:46
|
作者
HENSLEY, D
机构
关键词
D O I
10.2140/pjm.1983.105.183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:183 / 191
页数:9
相关论文
共 50 条
  • [31] Finitely many smooth d-polytopes with n lattice points
    Tristram Bogart
    Christian Haase
    Milena Hering
    Benjamin Lorenz
    Benjamin Nill
    Andreas Paffenholz
    Günter Rote
    Francisco Santos
    Hal Schenck
    Israel Journal of Mathematics, 2015, 207 : 301 - 329
  • [32] Finitely many smooth d-polytopes with n lattice points
    Bogart, Tristram
    Haase, Christian
    Hering, Milena
    Lorenz, Benjamin
    Nill, Benjamin
    Paffenholz, Andreas
    Rote, Guenter
    Santos, Francisco
    Schenck, Hal
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 207 (01) : 301 - 329
  • [33] Residue formulae, vector partition functions and lattice points in rational polytopes
    Brion, M
    Vergne, M
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (04) : 797 - 833
  • [34] LEFSCHETZ FIXED-POINT THEOREM AND LATTICE POINTS IN CONVEX POLYTOPES
    INFIRRI, AVS
    ADVANCES IN MATHEMATICS, 1995, 116 (01) : 55 - 81
  • [35] COUNTING LATTICE POINTS IN CERTAIN RATIONAL POLYTOPES AND GENERALIZED DEDEKIND SUMS
    Kozuka, Kazuhito
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2016, 55 (02) : 199 - 214
  • [36] Extreme Points of Convex Polytopes Derived from Lattice Autoassociative Memories
    Ritter, Gerhard X.
    Urcid, Gonzalo
    PATTERN RECOGNITION, 2018, 10880 : 116 - 125
  • [37] Lattice Simplices with a Fixed Positive Number of Interior Lattice Points: A Nearly Optimal Volume Bound
    Averkov, Gennadiy
    Krumpelmann, Jan
    Nill, Benjamin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (13) : 3871 - 3885
  • [38] On the classification of convex lattice polytopes
    Liu, Heling
    Zong, Chuanming
    ADVANCES IN GEOMETRY, 2011, 11 (04) : 711 - 729
  • [39] Tensor valuations on lattice polytopes
    Ludwig, Monika
    Silverstein, Laura
    ADVANCES IN MATHEMATICS, 2017, 319 : 76 - 110
  • [40] Generating Smooth Lattice Polytopes
    Haase, Christian
    Lorenz, Benjamin
    Paffenholz, Andreas
    MATHEMATICAL SOFTWARE - ICMS 2010, 2010, 6327 : 315 - 328