MONOPOLES, VORTICES AND GEOMETRY OF YANG-MILLS BUNDLES

被引:31
|
作者
EZAWA, ZF
TZE, HC
机构
[1] UNIV PARIS 11,CNRS,PHYS THEORIQUE & PARTICULES ELEMENTAIRES LAB,F-91405 ORSAY,FRANCE
[2] STANFORD UNIV,STANFORD LINEAR ACCELERATOR CTR,STANFORD,CA 94305
关键词
D O I
10.1063/1.522869
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2228 / 2231
页数:4
相关论文
共 50 条
  • [31] Fiber bundles, Yang-Mills theory, and general relativity
    Weatherall, James Owen
    [J]. SYNTHESE, 2016, 193 (08) : 2389 - 2425
  • [32] Solutions of Yang-Mills equations on generalized Hopf bundles
    Blazic, N
    Vukmirovic, S
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2002, 41 (1-2) : 57 - 64
  • [33] HOLOMORPHIC VECTOR-BUNDLES AND YANG-MILLS FIELDS
    TRAUTMANN, G
    [J]. LECTURE NOTES IN MATHEMATICS, 1982, 950 : 377 - 401
  • [34] Supersymmetric Yang-Mills theory and Riemannian geometry
    Schiappa, R
    [J]. NUCLEAR PHYSICS B, 1998, 517 (1-3) : 462 - 484
  • [35] THE RIEMANNIAN GEOMETRY OF THE YANG-MILLS MODULI SPACE
    GROISSER, D
    PARKER, TH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (04) : 663 - 689
  • [36] The supersymmetric Yang-Mills theory on noncommutative geometry
    Sato, Hikaru
    Ishihara, Satoshi
    Kataoka, Hironobu
    Matsukawa, Atsuko
    Shimojo, Masafumi
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2014, 2014 (07):
  • [37] GEOMETRY OF MINIMAL ENERGY YANG-MILLS CONNECTIONS
    Stern, Mark
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2010, 86 (01) : 163 - 188
  • [38] Yang-Mills detour complexes and conformal geometry
    Gover, A. Rod
    Somberg, Petr
    Soucek, Vladimir
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (02) : 307 - 327
  • [39] Geometry of exceptional super Yang-Mills theories
    Rios, Michael
    Marrani, Alessio
    Chester, David
    [J]. PHYSICAL REVIEW D, 2019, 99 (04)
  • [40] YANG-MILLS FIELDS IN GRAVITATIONAL THEORY .1. YANG-MILLS FIELD AND GEOMETRY - HOLONOMIC THEORY
    BURGHARDT, R
    [J]. ACTA PHYSICA AUSTRIACA, 1973, 38 (04): : 327 - 335