Performance Modeling for FPGAs: Extending the Roofline Model with High-Level Synthesis Tools

被引:37
|
作者
da Silva, Bruno [1 ]
Braeken, An [1 ]
D'Hollander, Erik H. [2 ]
Touhafi, Abdellah [1 ,3 ]
机构
[1] Vrije Univ Brussel, INDI Dept, B-1050 Brussels, Belgium
[2] Univ Ghent, ELIS Dept, B-9000 Ghent, Belgium
[3] Vrije Univ Brussel, ETRO Dept, B-1050 Brussels, Belgium
关键词
High level synthesis;
D O I
10.1155/2013/428078
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The potential of FPGAs as accelerators for high-performance computing applications is very large, but many factors are involved in their performance. The design for FPGAs and the selection of the proper optimizations when mapping computations to FPGAs lead to prohibitively long developing time. Alternatives are the high-level synthesis (HLS) tools, which promise a fast design space exploration due to design at high-level or analytical performance models which provide realistic performance expectations, potential impediments to performance, and optimization guidelines. In this paper we propose the combination of both, in order to construct a performance model for FPGAs which is able to visually condense all the helpful information for the designer. Our proposed model extends the roofline model, by considering the resource consumption and the parameters used in the HLS tools, to maximize the performance and the resource utilization within the area of the FPGA. The proposed model is applied to optimize the design exploration of a class of window-based image processing applications using two different HLS tools. The results show the accuracy of the model as well as its flexibility to be combined with any HLS tool.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Performance and Resource Modeling for FPGAs using High-Level Synthesis tools
    Da Silva, Bruno
    Braeken, An
    D'Hollander, Erik H.
    Touhafi, Abdellah
    PARALLEL COMPUTING: ACCELERATING COMPUTATIONAL SCIENCE AND ENGINEERING (CSE), 2014, 25 : 523 - 531
  • [2] High-Level Modeling and Synthesis for Embedded FPGAs
    Chen, Xiaolin
    Li, Shuai
    Schleifer, Jochen
    Coenen, Thomas
    Chattopadhyay, Anupam
    Ascheid, Gerd
    Noll, Tobias G.
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 1565 - 1570
  • [3] High-level power modeling of CPLDs and FPGAs
    Shang, L
    Jha, NK
    2001 INTERNATIONAL CONFERENCE ON COMPUTER DESIGN, ICCD 2001, PROCEEDINGS, 2001, : 46 - 51
  • [4] Extending High-Level Synthesis with High-Performance Computing Performance Visualization
    Huthmann, Jens
    Podobas, Artur
    Sommer, Lukas
    Koch, Andreas
    Sano, Kentaro
    2020 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2020), 2020, : 371 - 380
  • [5] A Survey on Performance Optimization of High-Level Synthesis Tools
    Huang, Lan
    Li, Da-Lin
    Wang, Kang-Ping
    Gao, Teng
    Tavares, Adriano
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (03) : 697 - 720
  • [6] A Survey on Performance Optimization of High-Level Synthesis Tools
    Lan Huang
    Da-Lin Li
    Kang-Ping Wang
    Teng Gao
    Adriano Tavares
    Journal of Computer Science and Technology, 2020, 35 : 697 - 720
  • [7] Development of Multiobjective High-Level Synthesis for FPGAs
    Reyes Fernandez de Bulnes, Darian
    Maldonado, Yazmin
    Trujillo, Leonardo
    SCIENTIFIC PROGRAMMING, 2020, 2020
  • [8] HIGH-LEVEL SYNTHESIS UNLOCKS POTENTIAL OF FPGAS
    TUCK, B
    COMPUTER DESIGN, 1991, 30 (07): : 50 - &
  • [9] Improved Synthesis of Compressor Trees on FPGAs in High-level Synthesis
    Tu, Le
    Yuan, Yuelai
    Huang, Kan
    Zhang, Xiaoqiang
    Wang, Zixin
    Chen, Dihu
    2017 IEEE 25TH ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2017), 2017, : 25 - 25
  • [10] Challenges Designing for FPGAs Using High-Level Synthesis
    Faber, Clayton J.
    Harris, Steven D.
    Xiao, Zhili
    Chamberlain, Roger D.
    Cabrera, Anthony M.
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,