Universality for Left-Computably Enumerable Metric Spaces

被引:2
|
作者
Gavruskin, A. [1 ]
Nies, A. [1 ]
机构
[1] Univ Auckland, Dept Comp Sci, Private Bag 92019, Auckland, New Zealand
关键词
Polish metric space; left-c.e; real; left-c. e. metric spaces; universal object;
D O I
10.1134/S1995080214040179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There exists a universal object in the class of left-computably enumerable (left-c.e.) metric spaces with diameter bounded by a constant under effective isometric embeddings. There is no such universal object in the class of all left-c.e. metric spaces.
引用
收藏
页码:292 / 294
页数:3
相关论文
共 50 条
  • [31] The Structure of Computably Enumerable Preorder Relations
    S. A. Badaev
    N. A. Bazhenov
    B. S. Kalmurzaev
    Algebra and Logic, 2020, 59 : 201 - 215
  • [32] The complexity of orbits of computably enumerable sets
    Cholak, Peter A.
    Downey, Rodney
    Harrington, Leo A.
    BULLETIN OF SYMBOLIC LOGIC, 2008, 14 (01) : 69 - 87
  • [33] Extension of embeddings in the computably enumerable degrees
    Slaman, TA
    Soare, RI
    ANNALS OF MATHEMATICS, 2001, 154 (01) : 1 - 43
  • [34] A Note on the Differences of Computably Enumerable Reals
    Barmpalias, George
    Lewis-Pye, Andrew
    COMPUTABILITY AND COMPLEXITY: ESSAYS DEDICATED TO RODNEY G. DOWNEY ON THE OCCASION OF HIS 60TH BIRTHDAY, 2017, 10010 : 623 - 632
  • [35] Cupping Computably Enumerable Degrees Simultaneously
    Tran, Hong Hanh
    Wu, Guohua
    UNITY OF LOGIC AND COMPUTATION, CIE 2023, 2023, 13967 : 3 - 16
  • [36] Extensions of embeddings in the computably enumerable degrees
    Zhao, Jitai
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 : 204 - 211
  • [37] UNIVERSAL COMPUTABLY ENUMERABLE EQUIVALENCE RELATIONS
    Andrews, Uri
    Lempp, Steffen
    Miller, Joseph S.
    Keng Meng Ng
    Mauro, Luca San
    Sorbi, Andrea
    JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (01) : 60 - 88
  • [38] COMPUTABLY ENUMERABLE SETS AND RELATED ISSUES
    Lavrov, I. A.
    ALGEBRA AND LOGIC, 2012, 50 (06) : 494 - 511
  • [39] Kolmogorov complexity and computably enumerable sets
    Barmpalias, George
    Li, Angsheng
    ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (12) : 1187 - 1200
  • [40] ALGEBRAIC ASPECTS OF THE COMPUTABLY ENUMERABLE DEGREES
    SLAMAN, TA
    SOARE, RI
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (02) : 617 - 621