Universality for Left-Computably Enumerable Metric Spaces

被引:2
|
作者
Gavruskin, A. [1 ]
Nies, A. [1 ]
机构
[1] Univ Auckland, Dept Comp Sci, Private Bag 92019, Auckland, New Zealand
关键词
Polish metric space; left-c.e; real; left-c. e. metric spaces; universal object;
D O I
10.1134/S1995080214040179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There exists a universal object in the class of left-computably enumerable (left-c.e.) metric spaces with diameter bounded by a constant under effective isometric embeddings. There is no such universal object in the class of all left-c.e. metric spaces.
引用
收藏
页码:292 / 294
页数:3
相关论文
共 50 条
  • [1] The Lattice of Computably Enumerable Vector Spaces
    Dimitrov, Rumen D.
    Harizanov, Valentina
    COMPUTABILITY AND COMPLEXITY: ESSAYS DEDICATED TO RODNEY G. DOWNEY ON THE OCCASION OF HIS 60TH BIRTHDAY, 2017, 10010 : 366 - 393
  • [2] COMPUTABLY COMPACT METRIC SPACES
    Downey, Rodney G.
    Melnikov, Alexander G.
    BULLETIN OF SYMBOLIC LOGIC, 2023, 29 (02) : 170 - 263
  • [3] Every computably enumerable random real is provably computably enumerable random
    Calude, Cristian S.
    Hay, Nicholas J.
    LOGIC JOURNAL OF THE IGPL, 2009, 17 (04) : 351 - 374
  • [4] On computably enumerable structures
    Khoussainov B.
    Lobachevskii Journal of Mathematics, 2014, 35 (4) : 339 - 347
  • [5] A Computably Enumerable Partial Ordering Without Computably Enumerable Maximal Chains and Antichains
    A. S. Morozov
    Siberian Mathematical Journal, 2018, 59 : 463 - 469
  • [6] A Computably Enumerable Partial Ordering Without Computably Enumerable Maximal Chains and Antichains
    Morozov, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (03) : 463 - 469
  • [7] Computably Enumerable Partial Orders
    Cholak, Peter A.
    Dzhafarov, Damir D.
    Schweber, Noah
    Shore, Richard A.
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2012, 1 (02): : 99 - 107
  • [8] Computably Enumerable Equivalence Relations
    Gao S.
    Gerdes P.
    Studia Logica, 2001, 67 (1) : 27 - 59
  • [9] Relatively computably enumerable reals
    Bernard A. Anderson
    Archive for Mathematical Logic, 2011, 50 : 361 - 365
  • [10] Presentations of computably enumerable reals
    Downey, RG
    LaForte, GL
    THEORETICAL COMPUTER SCIENCE, 2002, 284 (02) : 539 - 555