THE INDECOMPOSABLE REPRESENTATION OF SO0(2,2) ON THE ONE-PARTICLE SPACE OF THE MASSLESS FIELD IN 1+1-DIMENSION

被引:6
|
作者
DEBIEVRE, S
RENAUD, J
机构
[1] Laboratoire de Physique Théorique et Mathématique, Université Paris VII, Paris Cedex 05, F-75251
[2] UFR de Mathématiques Univ.
关键词
D O I
10.1007/BF00750070
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The group SO0(2,2) is the finite-dimensional conformal group of the 1 + 1-dimensional Minkowski spacetime M. We identify the indecomposable representation of SO0(2,2) approximate to SO0(2, 1) x SO0(2, 1) that acts on the one-particle physical space of the massless scalar field on M. We accomplish this by realizing this space as a space K of positive energy distributional solutions to the massless Klein-Gordon equation, on which the Klein-Gordon inner product is well defined and positive semi-definite. We then use the analyticity properties of these solutions in the forward tube to show that SO0(2, 2) acts naturally on K, preserving the inner product. On fight-moving solutions, one copy of SO0(2, 1) acts trivially, whereas the restriction of the representation to the other copy is the unique one-dimensional extension of the first term of the discrete series of representations of SO0(2, 1). Similar results hold for left-moving solutions.
引用
收藏
页码:385 / 393
页数:9
相关论文
共 50 条
  • [31] Low-energy-theorem approach to one-particle singularity in QED2+1 -: art. no. 075
    Hoshino, Y
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (05):
  • [32] Quantization of the optical phase space S2 = {φ mod 2π, I > 0} in terms of the group SO↑(1,2)
    Kastrup, HA
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2003, 51 (10-11): : 975 - 1134
  • [33] One-particle spectral function singularities in a one-dimensional gas of spin-1/2 fermions with repulsive delta-function interaction
    Cadez, T.
    Nemati, S.
    Carmelo, J. M. P.
    NUCLEAR PHYSICS B, 2019, 942 : 45 - 102
  • [34] Perturbed self-similar massless scalar field in the space-times with circular symmetry in (2+1)-gravity
    Chan, R
    Da Silva, MFA
    Da Rocha, JFV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2005, 14 (10): : 1725 - 1738
  • [35] GEODESICS AND SHORTEST ARCS OF SOME SUB-RIEMANNIAN METRICS ON THE LIE GROUPS SU(1,1) x R AND SO0(2,1) x R WITH THREE-DIMENSIONAL GENERATING DISTRIBUTIONS
    Zubareva, I. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (02) : 295 - 315
  • [36] A CLASS OF EXPLICITLY SOLUBLE, LOCAL, MANY-CENTER HAMILTONIANS FOR ONE-PARTICLE QUANTUM-MECHANICS IN 2 AND 3 DIMENSIONS .1.
    GROSSMANN, A
    HOEGHKROHN, R
    MEBKHOUT, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (09) : 2376 - 2385
  • [37] Effective dynamics for a spin-1/2 particle constrained to a space curve in an electric and magnetic field
    Liang, Guo-Hua
    Wang, Yong-Long
    Lai, Meng-Yun
    Zhao, Hao
    Zong, Hong-Shi
    Liu, Hui
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [38] DYNAMICAL T=0 CORRELATIONS OF THE S=1/2 ONE-DIMENSIONAL HEISENBERG-ANTIFERROMAGNET WITH 1/R(2) EXCHANGE IN A MAGNETIC-FIELD
    TALSTRA, JC
    HALDANE, FDM
    PHYSICAL REVIEW B, 1994, 50 (10): : 6889 - 6899
  • [39] Rigorous solution of a moving particle with one-dimensional central potential V(q)=Bq2+A/q2 (A, B > 0) in quantum phase space representation
    Wei, GM
    Lü, LQ
    Li, QS
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2006, 27 (04): : 684 - 686
  • [40] Relativistic (S)over-cap-matrix formulation in one dimension for particles of spin-s (s=0, 1/2)
    Bourouis, Nahla
    Khounfais, Kamel
    Bouatrous, Meheiddine
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (12): : 1131 - 1141