DEGREE OF LOCAL APPROXIMATION OF FUNCTIONS IN C1[0,1] BY BERNSTEIN POLYNOMIALS

被引:10
|
作者
SCHURER, F [1 ]
STEUTEL, FW [1 ]
机构
[1] EINDHOVEN UNIV TECHNOL,DEPT MATH,EINDHOVEN,NETHERLANDS
关键词
D O I
10.1016/0021-9045(77)90030-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:69 / 82
页数:14
相关论文
共 50 条
  • [21] ON THE CONVERGENCE OF (p, q)-BERNSTEIN OPERATORS OF THE RATIONAL FUNCTIONS WITH POLES IN [0,1]
    Khan, Faisal
    Saif, Mohd
    Mursaleen, M.
    Khan, Abdul Hakim
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 : 15 - 27
  • [22] BERNSTEIN QUASI-INTERPOLANTS ON [0,1]
    SABLONNIERE, P
    MULTIVARIATE APPROXIMATION THEORY IV, 1989, 90 : 287 - 294
  • [23] ON BASES IN C([0,1]) AND L-1([0,1])
    Foias, Ciprian
    Singer, Ivan
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (03): : 215 - 244
  • [24] On subspaces of C[0,1] consisting of nonsmooth functions
    Berezhnoi, E. I.
    MATHEMATICAL NOTES, 2007, 81 (3-4) : 435 - 439
  • [25] The subdifferentiability properties of typical functions in C[0,1]
    Wang, XF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (02) : 621 - 631
  • [26] BASES IN SPACES C(0,1) AND L (0,1)
    CHANTURIA, ZA
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (11): : 1013 - +
  • [27] On the rate of approximation of functions by the Bernstein polynomials
    S. A. Telyakovskii
    Proceedings of the Steklov Institute of Mathematics, 2009, 264 : 177 - 184
  • [28] On the rate of approximation of functions by the Bernstein polynomials
    Telyakovskii, S. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2009, 264 : 177 - 184
  • [29] On the rate of approximation of functions by the Bernstein polynomials
    Telyakovskii, S. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2008, 14 (03): : 162 - 169
  • [30] On the approximation of analytic functions by the q-Bernstein polynomials in the case q > 1
    Ostrovska, Sofiya
    Electronic Transactions on Numerical Analysis, 2010, 37 : 105 - 112