THE GEOMETRIC CONVEXITY OF A FUNCTION INVOLVING GAMMA FUNCTION WITH APPLICATIONS

被引:7
|
作者
Chu, Yuming [1 ]
Zhang, Xiaoming [2 ]
Zhang, Zhihua [3 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Haining Radio & Tv Univ, Haining 314400, Peoples R China
[3] Zixing Municipal Sch, Zixing 423400, Peoples R China
来源
关键词
gamma function; geometrically convex function; geometrically concave function; monotonicity;
D O I
10.4134/CKMS.2010.25.3.373
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that (sic) is geometrically convex on (0, infinity). As its applications, we obtain some new estimates for (sic).
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [31] Monotonicity properties of a function involving the psi function with applications
    Tie-Hong Zhao
    Zhen-Hang Yang
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2015
  • [32] Monotonicity properties of a function involving the psi function with applications
    Zhao, Tie-Hong
    Yang, Zhen-Hang
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [33] The Continuity and Convexity of a Nonlinear Scalarization Function with Applications in Set Optimization Problems Involving a Partial Order Relation
    Zhang, Zi-Ru
    Xu, Yang-Dong
    MATHEMATICS, 2024, 12 (23)
  • [34] On completely monotone of an arbitrary real parameter function involving the gamma function
    Chen, Bin
    Zhou, Haigang
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 658 - 663
  • [35] A convexity property and a new characterization of Euler’s gamma function
    Horst Alzer
    Janusz Matkowski
    Archiv der Mathematik, 2013, 100 : 131 - 137
  • [36] A convexity property and a new characterization of Euler's gamma function
    Alzer, Horst
    Matkowski, Janusz
    ARCHIV DER MATHEMATIK, 2013, 100 (02) : 131 - 137
  • [37] New Summation Expressions Involving the Gamma Function
    Harry A. Mavromatis
    International Journal of Theoretical Physics, 1998, 37 : 3139 - 3144
  • [38] Monotonicity and inequalities involving the incomplete gamma function
    Yang, Zhen-Hang
    Zhang, Wen
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [39] A Sequence Involving nth Roots of the Gamma Function
    Furdui, Ovidiu
    Qin, Huizeng
    FIBONACCI QUARTERLY, 2012, 50 (03): : 286 - 288
  • [40] New summation expressions involving the gamma function
    Mavromatis, HA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (12) : 3139 - 3144