ELASTIC FIELDS OF NANOSCOPIC INCLUSIONS IN NANOCOMPOSITES

被引:0
|
作者
Ovid'ko, I. A. [1 ]
Sheinerman, A. G. [1 ]
机构
[1] Russian Acad Sci, Inst Problems Mech Engn, Bolshoj 61,Vasil, St Petersburg 199178, Russia
来源
MATERIALS PHYSICS AND MECHANICS | 2010年 / 10卷 / 1-2期
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An overview of the analytical solutions for the elastic fields of nanoinclusions in composite solids is given. Special attention is paid to the case of nanocomposites. Besides, a description of the most popular analytical procedures for the calculations of the elastic fields of inclusions in nanocomposites is provided. These procedures include the Green function method, the method of surface dislocation loops, integration of the equations of equilibrium, and the method of infinitesimal inclusions. Also, the solutions for the elastic fields of nanoinclusions, derived within linear elasticity, are discussed and compared with those obtained using atomistic simulations. It is shown that the linear elasticity approach is valid down to extremely small dimensions of nanoinclusions.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 50 条
  • [31] ELLIPSOIDAL INCLUSIONS IN AN ELASTIC MEDIUM
    ALAWNEH, AD
    SHAWAGFEH, NT
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1989, 20 (08): : 840 - 849
  • [32] Reconstruction of inclusions in an elastic body
    Uhlmann, Gunther
    Wang, Jenn-Nan
    Wu, Chin-Tien
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (06): : 569 - 582
  • [33] Nanoscopic X-ray Fluorescence Imaging of Meteoritic Particles and Diamond Inclusions
    Laforce, Brecht
    Schmitz, Sylvia
    Vekemans, Bart
    Rudloff, Jennifer
    Garrevoett, Jan
    Tucoulou, Remi
    Brenker, Frank E.
    Martinez-Criado, Gema
    Vincze, Laszlo
    ANALYTICAL CHEMISTRY, 2014, 86 (24) : 12369 - 12374
  • [34] THE SCATTERING OF A PLANE ELASTIC WAVE BY SPHERICAL ELASTIC INCLUSIONS
    KERR, FH
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1992, 30 (02) : 169 - 186
  • [35] DELAMINATED THIN ELASTIC INCLUSIONS INSIDE ELASTIC BODIES
    Khludnev, Alexander M.
    Leugering, Guenter R.
    MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS, 2014, 2 (01) : 1 - 21
  • [36] Junction problem for elastic and rigid inclusions in elastic bodies
    Faella, Luisa
    Khludnev, Alexander
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (12) : 3381 - 3390
  • [37] Noncoercive problems for elastic bodies with thin elastic inclusions
    Khludnev, Alexander
    Fankina, Irina
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) : 14214 - 14228
  • [38] On Timoshenko thin elastic inclusions inside elastic bodies
    Khludnev, A. M.
    Leugering, G. R.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2015, 20 (05) : 495 - 511
  • [39] Non-elliptical inclusions that achieve uniform internal strain fields in an elastic half-plane
    Dai, Ming
    Ru, C. Q.
    Gao, Cun-Fa
    ACTA MECHANICA, 2015, 226 (11) : 3845 - 3863
  • [40] Non-elliptical inclusions that achieve uniform internal strain fields in an elastic half-plane
    Ming Dai
    C. Q. Ru
    Cun-Fa Gao
    Acta Mechanica, 2015, 226 : 3845 - 3863