TANGENTIAL COVERS AND THE BRILL-NOETHER CONDITION

被引:0
|
作者
TREIBICH, A
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We associate to any elliptic curve E over C a ruled surface S --> E and complete linear systems of S, V(g, E)(g is-an-element-of N+), whose generic element is a smooth projective curve of genus g satisfying the Brill-Noether condition.
引用
收藏
页码:815 / 817
页数:3
相关论文
共 50 条
  • [31] Semipositive bundles and Brill-Noether theory
    Muñoz, V
    Presas, F
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 179 - 190
  • [32] A Proof of the Brill-Noether Method from Scratch
    Berardini E.
    Couvreur A.
    Lecerf G.
    ACM Communications in Computer Algebra, 2024, 57 (04): : 200 - 229
  • [33] Skeletons of Prym varieties and Brill-Noether theory
    Len, Yoav
    Ulirsch, Martin
    ALGEBRA & NUMBER THEORY, 2021, 15 (03) : 785 - 820
  • [34] Stability of normal bundles of Brill-Noether curves
    Coskun, Izzet
    Smith, Geoffrey
    MATHEMATISCHE ANNALEN, 2025, 391 (04) : 4997 - 5032
  • [35] Brill-Noether loci with ramification at two points
    Teixidor-I-Bigas, Montserrat
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (03) : 1217 - 1232
  • [36] Hodge locus and Brill-Noether type locus
    Biswas, Indranil
    Dan, Ananyo
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (03) : 221 - 229
  • [37] Nonemptiness and smoothness of twisted Brill-Noether loci
    Hitching, George H.
    Hoff, Michael
    Newstead, Peter E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 685 - 709
  • [38] Connectedness of Brill-Noether Loci via Degenerations
    Osserman, Brian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (19) : 6162 - 6178
  • [39] Remarks on Brill-Noether divisors and Hilbert schemes
    Choi, Youngook
    Kim, Seonja
    Kim, Young Rock
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 377 - 384
  • [40] ON THE CLASS OF BRILL-NOETHER LOCI FOR PRYM VARIETIES
    DECONCINI, C
    PRAGACZ, P
    MATHEMATISCHE ANNALEN, 1995, 302 (04) : 687 - 697