A note on the k-tuple total domination number of a graph

被引:2
|
作者
Kazenti, Adel P. [1 ]
机构
[1] Univ Mohaghegh Ardabil, Dept Math, POB 5619911367, Ardebil, Iran
来源
TBILISI MATHEMATICAL JOURNAL | 2015年 / 8卷 / 02期
关键词
k-tuple domination number; k-tuple total domination number; k-transversal; open neighborhood hypergraph; expectation;
D O I
10.1515/tmj-2015-0027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every positive integer k and every graph G = (V, E) with minimum degree at least vertex set S is a k-tuple total domuinatin set (restp. k-tuple dominating set) of G, if for every vertex v is an element of V, vertical bar N-G(upsilon) boolean AND S vertical bar >= k, (resp. vertical bar N-G[upsilon] boolean AND S vertical bar >= k). The k-tuple total domination number 1,,t(C1) (resp. k-tuple domination number gamma xk,t (G) (resp. k-tuple domination number gamma xk (G) is the minimum cardinality of a k-tuple total dominating set (resp. k-tuple dominating set (resp. k-tuple dominating set ) of G. In this paper, we first prove that if to is a positive integer, then for which graphs G, gamma(xk,t)(G) = m or gamma(xk)(G) = m and give a necessary and sufficient condition for gamma(xk,t)(G) = gamma(x(k+1))(G). Then we show tint if C is a graph of order with delta(G) >= k + 1 >= 2, then gamma(xk,t)(G) has the lower bound 2 gamma(x(k+1))(G) - n, and characterize graphs that equality holds for them. Finally we present two upper bounds for the k-tuple total domination number of a graph in terms of its order, minimum degree and k.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 50 条
  • [1] Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph
    Rad, Nader Jafari
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 280 - 290
  • [2] A note on Roman k-tuple domination number
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 273 - 274
  • [3] A note on the k-tuple domination number of graphs
    Cabrera Martinez, Abel
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (04)
  • [4] k-tuple total domatic number of a graph
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. UTILITAS MATHEMATICA, 2014, 95 : 189 - 197
  • [5] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Abd Aziz, Noor A'lawiah
    Henning, Michael A.
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [6] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Michael A. Henning
    Nader Jafari Rad
    [J]. Graphs and Combinatorics, 2021, 37 : 325 - 336
  • [7] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Henning, Michael A.
    Rad, Nader Jafari
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (01) : 325 - 336
  • [8] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Noor A’lawiah Abd Aziz
    Michael A. Henning
    Nader Jafari Rad
    Hailiza Kamarulhaili
    [J]. Graphs and Combinatorics, 2022, 38
  • [9] The k-tuple domination number revisited
    Zverovich, Vadim
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (10) : 1005 - 1011
  • [10] k-tuple total domination in graphs
    Henning, Michael A.
    Kazemi, Adel P.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (09) : 1006 - 1011