Upper bounds on the k-tuple domination number and k-tuple total domination number of a graph

被引:0
|
作者
Rad, Nader Jafari [1 ]
机构
[1] Shahed Univ, Dept Math, Tehran, Iran
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a positive integer k, a subset S of vertices of a graph G is called a k-tuple dominating set in G if for every vertex v is an element of V(G), vertical bar N[v] boolean AND S vertical bar >= k. The minimum cardinality of a k-tuple dominating set in G is the k-tuple domination number gamma(xk)(G) of G. A subset S of vertices of a graph G is called a k-tuple total dominating set in G if for every vertex v is an element of V(G), vertical bar N(v) boolean AND S vertical bar >= k. The minimum cardinality of a k-tuple total dominating set in G is the k-tuple total domination number gamma(xk,t)(G) of G. We present probabilistic upper bounds for the k-tuple domination number of a graph as well as for the k-tuple total domination number of a graph, and improve previous bounds given in [J. Harant and M.A. Henning, Discuss. Math. Graph Theory 25 (2005), 29-34], [E.J. Cockayne and A.G. Thomason, J. Combin. Math. Combin. Comput. 64 (2008), 251-254], and [M.A. Henning and A.P. Kazemi, Discrete Appl. Math. 158 (2010), 1006-1011] for graphs with sufficiently large minimum degree under certain assumptions.
引用
收藏
页码:280 / 290
页数:11
相关论文
共 50 条
  • [1] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Michael A. Henning
    Nader Jafari Rad
    [J]. Graphs and Combinatorics, 2021, 37 : 325 - 336
  • [2] Upper Bounds on the k-Tuple (Roman) Domination Number of a Graph
    Henning, Michael A.
    Rad, Nader Jafari
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (01) : 325 - 336
  • [3] Improved upper bounds for the k-tuple domination number
    Gagarin, Andrei
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 41 : 257 - 261
  • [4] A note on the k-tuple total domination number of a graph
    Kazenti, Adel P.
    [J]. TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02): : 281 - 286
  • [5] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Abd Aziz, Noor A'lawiah
    Henning, Michael A.
    Rad, Nader Jafari
    Kamarulhaili, Hailiza
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [6] New bounds on the k-domination number and the k-tuple domination number
    Rautenbach, Dieter
    Volkmann, Lutz
    [J]. APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 98 - 102
  • [7] Improved Bounds on the k-tuple (Roman) Domination Number of a Graph
    Noor A’lawiah Abd Aziz
    Michael A. Henning
    Nader Jafari Rad
    Hailiza Kamarulhaili
    [J]. Graphs and Combinatorics, 2022, 38
  • [8] The k-tuple domination number revisited
    Zverovich, Vadim
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (10) : 1005 - 1011
  • [9] A generalised upper bound for the k-tuple domination number
    Gagarin, Andrei
    Zverovich, Vadim E.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (5-6) : 880 - 885
  • [10] A note on Roman k-tuple domination number
    Abd Aziz, Noor A'lawiah
    Rad, Nader Jafari
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, 7 (02) : 273 - 274