THE GEOMETRY OF TIME-DEPENDENT LAGRANGIANS

被引:0
|
作者
ANASTASIEI, M
机构
[1] Department of Mathematics, University Al. I. Cuza, Iaşi
关键词
D O I
10.1016/0895-7177(94)90157-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A generalization of Lagrange geometry appropriate for time-dependent Lagrangians arising in physics and biology, called rheonomic Lagrange geometry, is developed. Nonlinear and linear connections, their torsions, curvatures and deflections are explicitly given. Almost contact structures in rheonomic Lagrange spaces are characterized. Maxwell's equations, for a given Lagrangian determined deflection tensor, are derived.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条
  • [22] TIME-DEPENDENT NEUTRON-TRANSPORT IN SPHERICAL GEOMETRY
    GANAPOL, BD
    ROYBAL, JA
    HENNINGER, AK
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 32 (JUN): : 312 - 314
  • [23] Universal time-dependent deformations of Schrödinger geometry
    Yu Nakayama
    Journal of High Energy Physics, 2010
  • [24] TIME-DEPENDENT QUANTUM-SYSTEMS AND CHRONOPROJECTIVE GEOMETRY
    BURDET, G
    DUVAL, C
    PERRIN, M
    LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (04) : 255 - 262
  • [25] Time-dependent Hamiltonians and geometry of operators generated by them
    Pal, Kunal
    Pal, Kuntal
    Physical Review E, 2025, 111 (01)
  • [26] Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent
    Rami Ahmad El-Nabulsi
    Computational and Applied Mathematics, 2014, 33 : 163 - 179
  • [27] Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent
    El-Nabulsi, Rami Ahmad
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (01): : 163 - 179
  • [28] MINIMUM WALL DISTANCE COMPUTATIONS WITH TIME-DEPENDENT GEOMETRY FOR CFD
    Wang, Liwu
    Feng, Jian
    Liu, Yu
    Zhang, Sijun
    PROCEEDINGS OF ASME 2021 FLUIDS ENGINEERING DIVISION SUMMER MEETING (FEDSM2021), VOL 1, 2021,
  • [29] Unsupervised learning applied to progressive compression of time-dependent geometry
    Baby, T
    Kim, Y
    Varshney, A
    COMPUTERS & GRAPHICS-UK, 2005, 29 (03): : 451 - 461
  • [30] SPECIFIC FEATURES OF TIME-DEPENDENT PN APPROXIMATIONS IN SPHERICAL GEOMETRY
    PELTZER, P
    PUCKER, N
    ACTA PHYSICA AUSTRIACA, 1979, 51 (01): : 9 - 28