THE GEOMETRY OF TIME-DEPENDENT LAGRANGIANS

被引:0
|
作者
ANASTASIEI, M
机构
[1] Department of Mathematics, University Al. I. Cuza, Iaşi
关键词
D O I
10.1016/0895-7177(94)90157-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A generalization of Lagrange geometry appropriate for time-dependent Lagrangians arising in physics and biology, called rheonomic Lagrange geometry, is developed. Nonlinear and linear connections, their torsions, curvatures and deflections are explicitly given. Almost contact structures in rheonomic Lagrange spaces are characterized. Maxwell's equations, for a given Lagrangian determined deflection tensor, are derived.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条
  • [1] THE CONSTRAINT ALGORITHM FOR TIME-DEPENDENT LAGRANGIANS
    CHINEA, D
    DELEON, M
    MARRERO, JC
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) : 3410 - 3447
  • [2] Minimizing measures for time-dependent Lagrangians
    Iturriaga, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1996, 73 : 216 - 240
  • [3] Time-Dependent Lagrangians Invariant by a Vector Field
    Miguel C. Muñoz-Lecanda
    Narciso Román-Roy
    F. Javier Yániz-Fernández
    Letters in Mathematical Physics, 2001, 57 : 107 - 121
  • [4] Time-dependent Lagrangians invariant by a vector field
    Muñoz-Lecanda, MC
    Román-Roy, N
    Yániz-Fernández, FJ
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 57 (02) : 107 - 121
  • [5] GEOMETRIC-THEORY OF TIME-DEPENDENT SINGULAR LAGRANGIANS
    CARINENA, JF
    FERNANDEZNUNEZ, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1993, 41 (06): : 517 - 552
  • [6] ALTERNATIVE LAGRANGIANS AND FOULED HAMILTONIANS FOR THE TIME-DEPENDENT OSCILLATOR
    PROFILO, G
    SOLIANI, G
    ANNALS OF PHYSICS, 1994, 229 (01) : 160 - 176
  • [7] Compression of time-dependent geometry
    Lengyel, Jerome Edward
    Proceedings of the Symposium on Interactive 3D Graphics, 1999, : 89 - 95
  • [8] Time-dependent kinetic energy metrics for Lagrangians of electromagnetic type
    Sarlet, W.
    Prince, G.
    Mestdag, T.
    Krupkova, O.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (08)
  • [9] Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians
    Carinena, Jose F.
    Fernandez Nunez, Jose
    NONLINEAR DYNAMICS, 2016, 86 (02) : 1285 - 1291
  • [10] Geometric approach to dynamics obtained by deformation of time-dependent Lagrangians
    José F. Cariñena
    José Fernández Núñez
    Nonlinear Dynamics, 2016, 86 : 1285 - 1291