Characterizing all trees with locating-chromatic number 3

被引:21
|
作者
Baskoro, Edy Tri [1 ]
Asmiati [1 ]
机构
[1] Inst Teknol Bandung, Fac Math & Nat Sci, Combinatorial Math Res Grp, Jalan Ganesa 10, Bandung, Indonesia
关键词
Locating-chromatic number; graph; tree;
D O I
10.5614/ejgta.2013.1.2.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c be a proper k-coloring of a connected graph G. Let Pi = {S-1, S-2...,S-k} be the induced partition of V (G) by c, where S-i is the partition class having all vertices with color i. The color code c (Pi) (v) of vertex v is the ordered k-tuple (d (v,S-1), d (v, S-2),...,d (v ,S-k)), where d (v, S-i) = min {d (v,x) |x is an element of S-i}, for 1 <= i <= k. If all vertices of G have distinct color codes, then c is called a locating-coloring of G. The locating-chromatic number of G, denoted by chi(L) (G), is the smallest k such that G posses a locating k-coloring. Clearly, any graph of order n >= 2 has locating-chromatic number k, where 2 <= k <= n. Characterizing all graphs with a certain locating-chromatic number is a difficult problem. Up to now, all graphs of order n with locating chromatic number 2; n 1; or n have been characterized. In this paper, we characterize all trees whose locating- chromatic number is 3. We also give a family of trees with locating-chromatic number 4.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 50 条
  • [21] Upper bounds on the locating chromatic number of trees
    Furuya, Michitaka
    Matsumoto, Naoki
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 338 - 341
  • [22] CERTAIN OPERATION OF GENERALIZED PETERSEN GRAPHS HAVING LOCATING-CHROMATIC NUMBER FIVE
    Irawan, Agus
    Asmiati
    Suharsono, S.
    Muludi, Kurnia
    Zakaria, La
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2020, 24 (02): : 83 - 97
  • [23] ON THE LOCATING-CHROMATIC NUMBERS OF SUBDIVISIONS OF FRIENDSHIP GRAPH
    Salindeho, Brilly Maxel
    Assiyatun, Hilda
    Baskoro, Edy Tri
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2020, 26 (02) : 175 - 184
  • [24] Subdivision of Certain Barbell Operation of Origami Graphs has Locating-Chromatic Number Five
    Irawan, Agus
    Asmiati
    Zakaria, La
    Muludi, Kurnia
    Utami, Bernadhita Herindri Samodra
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (09): : 79 - 85
  • [25] The Neighbor-Locating-Chromatic Number of Trees and Unicyclic Graphs
    Alcon, Liliana
    Gutierrez, Marisa
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (03) : 659 - 675
  • [26] Irredundance chromatic number and gamma chromatic number of trees
    Kalarkop, David Ashok
    Kaemawichanurat, Pawaton
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [27] The Locating Chromatic Number of Book Graph
    Inayah, Nur
    Aribowo, Wisnu
    Yahya, Maiyudi Mariska Windra
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [28] On the locating chromatic number of Kneser graphs
    Behtoei, Ali
    Omoomi, Behnaz
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (18) : 2214 - 2221
  • [29] THE LOCATING CHROMATIC NUMBER OF THE JOIN OF GRAPHS
    Behtoei, A.
    Anbarloei, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (06): : 1491 - 1504
  • [30] Locating Chromatic Number of Palm Graph
    Welyyanti, Des
    Taufiqurrahman, Ibrahim
    Permana, Dony
    Zahra, Rifda Sasmi
    Yulianti, Lyra
    IAENG International Journal of Applied Mathematics, 2024, 54 (10) : 1969 - 1975